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Approximations of Optimal Alarm Systems For
Anomaly Detection
Rodney A Martin, Ph.D.Member, IEEE

Abstract— In many engineering systems, the ability to give an
alarm prior to impending critical events is of great importance.
These critical events may have varying degrees of severity, and
in fact they may occur during normal system operation. In this
paper, we investigate approximations to theoretically optimal
methods of designing such alarm systems for zero-mean linear
dynamic systems driven by Gaussian noise. This simple modeling
paradigm suffices due to the nature of the engineering and/or
behavioral systems provided as examples to motivate the use of
these methods.

One example addresses thermal comfort applications for
commercial buildings. Another example addresses integrated
caution and warning health management systems for spacecraft
propulsion. For both examples, an alarm may be given for any
number of level-crossing events that occur over a specified time
period. As such, an optimal alarm system can be designed to warn
facility managers or ground-based telemetry data analysts of
impending complaints or anomalous engine events, respectively.
This will aid them in making critical decisions about building or
spacecraft operations.

Index Terms— Optimal alarm theory, Level-crossing theory,
Kalman prediction, Anomaly Detection

I. I NTRODUCTION & B ACKGROUND

T HIS article introduces a novel approach of combining
the practical appeal of Kalman prediction techniques

with level-crossing theory and optimal alarm system design.
A comprehensive demonstration of practical application for
the design of optimal alarm systems has been covered in the
literature [1], [2], [3]. However, the background theory for
optimal alarm systems has seen modest coverage by other
authors as well [4], [5], [6], [7]. The latter is by no means
a comprehensive list, but illustrates a cross-section of the
primary authors responsible for introducing optimal alarm
systems in a classical and practical sense.

It was shown by Svensson [1], [2] that an optimal alarm
system is fundamentally based upon a likelihood ratio criterion
via the Neyman-Pearson lemma. This allows us to design an
optimal alarm system that will elicit the fewest possible false
alarms for a fixed detection probability. This becomes impor-
tant when considering the numerous applications that might
benefit from an intelligent tradeoff between false alarms and
missed detections, by applying the theory and methodology
introduced in this article.

There are several other decision rules that can be used from
hypothesis testing/decision theory, in lieu of the Neyman-
Pearson decision rule used as the basis of optimality here.
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Among these are Bayesian, MAP (maximum a posteriori),
maximum likelihood, and the minimax criteria. The latter is
derived from the Bayesian criterion, and seeks to minimize
the maximum risk. Some recent interesting developments
have even described adaptive on-line techniques using the
Bayesian formulation [8]. However, there are still considerable
computational issues, and a well-defined cost function is still
required, even when the posterior probability is adaptively
updated.

Here we present two contrasting examples representing
distinct applications. The first example is based upon predic-
tion and alarm of thermal sensation complaints in buildings,
previously presented in [3]. As such, some of the technical
details for this example will be presented in a more concise
fashion. The second example is based upon fault detection and
diagnostic work for spacecraft propulsion systems, as alluded
to in [9]. However, both examples share the quantification
of any numberof level-crossing events that may occur over
a specified time period. Both examples also assume quite
liberally that the practical events of interest can sufficiently be
characterized by this class of level-crossing events. That is, we
assume that both thermal sensation complaints and spacecraft
engine anomalies can accurately be represented by level-
crossings, whose processes are characterized or transformed
into zero-mean linear dynamic systems driven by Gaussian
noise. More evidence to support this modeling paradigm will
be presented subsequently.

Several examples of level-crossing events within this class
will be studied here, varying from the simple case which in-
volves two adjacent time slices, to the much more complicated
case that involves a level crossing event that may span many
time slices and exceed the level many times during this time-
frame. The former more simple case is traditionally studied
in the Swedish literature and invokes ARMA(X) prediction
methods [1], [2], [4], [5], [6], [7]. A variant of the latter more
complicated case has been investigated by Kerr [10] and uses
a Kalman-filter-based approach.

There is an extensive history of invoking Kalman-filter-
based approaches within the failure detection literature. A few
of the most groundbreaking articles that discuss the use of
Kalman filter methods for failure detection have been authored
by Kerr [10], and Willsky and Jones [11]. Both of these articles
have a long history of related methods descending from them,
i.e., [12] which alludes to the use of the Neyman-Pearson
lemma. However, these methods have not been without debate
over the years, with one recent criticism of [11] addressing the
claim of its optimality by Kerr [13].

The method presented by Willsky and Jones is charac-
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terized by a formulation of the anomaly detection problem
involving the GLR (generalized likelihood ratio) test. The
method derived by Kerr shows how to derive a failure detection
algorithm whose design is performed by computing false alarm
and correct detection probabilities over a time interval. Both
methods are related to, but not directly derived from optimal
alarm system theory based upon level-crossings introduced
by DeMaŕe [5] and Svensson et al. [2]. As was previously
mentioned in this section, we aim to more precisely close
this gap between the use of Kalman prediction techniques and
optimal alarm systems in this article. However, this article is
not meant to serve as an anecdote to the ongoing debate, but
rather as a participation in this discussion from a different
theoretical angle, infused by a segment of the literature that
has been largely overlooked. Furthermore, it is motivated by
practical examples whose anomalies can be described from
multiple variants within a class of level-crossing events in lieu
of only one.

II. M OTIVATION FOR TARGET APPLICATIONS

Traditionally, examples of failures using anomaly detection
techniques can be characterized by a level-crossing of a critical
level,L, that is assumed to have a fixed, static value. The level
is exceeded by some critical parameter than can be represented
by a dynamic process, which can often be modeled as a
zero-mean linear dynamic system driven by Gaussian noise.
Most of the theory that follows is based upon this standard
representation of the anomaly detection problem.

A. Thermal Comfort Application

For the example currently under discussion based on thermal
sensation complaints, the critical valueL is not fixed. In fact,
it varies with time, and there are two of these stochastic
critical levels: one for hot complaints, and another for cold.
These levels represent the temperature at which a group of
occupants in a zone would complain if too hot or cold. They
are somewhat artificial, because such temperatures cannot be
measured continuously. However, when complaints do occur,
the temperatures can be measured and stored in a maintenance
management database. Therefore the statistics of these levels
can be computed from this database repository, as described
by Federspiel [14], and used to generate a model whose output
represents the complaint levels of interest.

The two processes to be used for this example are one of the
two stochastic critical levels (i.e., the hot complaint level) and
its interaction with the controlled process of interest (i.e., the
building or space/zone temperature). In order to transform this
problem easily into one that fits the paradigm of a fixed, static
threshold, we simply take the difference between the stochastic
critical level and the controlled process, implying thatL = 0.
Since there are two stochastic critical levels, both hot and
cold, with differing descriptive statistics, these alarm systems
will need to be designed independently and implemented in
parallel. Only one will be presented in the subsequent sections
for illustrative purposes. The idea of the critical level itself
being modeled as a stationary Gaussian process was also

recognized by Svensson as a potential candidate for study in
the context of optimal alarm systems [1], p.93.

In buildings, time-of-day complaint rates and energy usage
fluctuate in a predictable manner. Therefore, it is common
to expect a peak in the complaint rate during the morning,
called the “arrival complaint period.” The arrival complaint
phenomenon was hypothesized by Federspiel et al. [15] as the
result of a naturally high metabolic rate of building occupants
during this period. Hence we can look at breaking down the
periods of interest into two distinct timeframes, described
below.

1) Arrival and operating complaints:Prior to the start of
the beginning of the day (eg. 8 am), we want to predict an
arrival complaint, and all remaining operating complaints for
a sliding window of time of fixed length. An arrival complaint
has no restriction on happening at a particular time (i.e., late
arrivals are allowed).

2) Operating complaints only:Following the start of the
day (i.e., conceivably after the first arrival complaint), we
want to predict all operating complaints any point after the
beginning of the day, for a sliding window of time of fixed
length.

These timeframes each correspond to different level-
upcrossing events, to be discussed for this specific application
in more detail in the subsequent section. However, regardless
of application, upcrossings, downcrossings, and exceedances
are defined as follows:

1) Exceedance:A one-dimensional level-crossing event,
{xk > L}, whereL is some critical threshold level exceeded
by a process whose value at timek is xk.

2) Upcrossing: A two-dimensional level crossing event,
{xk < L, xk+1 > L}.

3) Downcrossing:A two-dimensional level crossing event
{xk > L, xk+1 < L}.

The ability to predict the average thermal comfort of a
group of building occupants within a zone during either of
the two timeframes listed previously can aid abundantly in
developing optimal thermostat setting strategies. Automation
of some of the critical decisions that facility mangers often
do not have adequate time to attend to within the building
operations domain can potentially help to save significantly in
operating costs.

B. Spacecraft Propulsion System Anomaly Detection Applica-
tion

The primary parameter of interest for this study that is
available and measured for spacecraft propulsion systems
is the control system error, or the difference between the
commanded and actual throttle. Not only is this practically
appealing due to the the fact that there are often hard limits set
on the control system error, but the novel methods described in
this paper apply quite cleanly to this parameter. This is evident
due to the zero mean of the control system error during non-
transient operation, and qualitatively Gaussian characteristics.
Furthermore, the control systems were most likely designed
with disturbance rejection in mind. Therefore, any anomalous
excursions away from the reference value not explained by
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transients is cause for alarm. As such, the design of a robust
detection algorithm and subsequent diagnostic investigation
are of paramount importance in the implementation and de-
ployment of such an alarm system.

A very practical anecdote to the detection problem is the
use of hard thresholds, also commonly known as “redlines.”
These limits on throttle control system error act as a basic, yet
very effective measure of implementing anomaly detection-
based alarm systems. A mixture ratio control system used
aboard a spacecraft propulsion system may also benefit from
the application of a similar detection algorithm. However,
redlines are used for a variety of other parameters not used
for control, and the zero-mean linear dynamic system driven
by Gaussian noise modeling paradigm may break down ac-
cordingly. Further investigation of the modeling variants for
different spacecraft propulsion system parameters can be found
in [9]. In this article, one of the primary investigative themes
for this application is to compare the redline detection method
to others, including the novel one introduced in this paper.

Unlike the thermal comfort application, the level-crossing
problem can’t easily be transformed into upcrossings of a level
L = 0 for either hot or cold complaints. This example requires
a little more complexity due to the nature of the parameter
of interest. However, there is no need to transform the level-
upcrossing problem to be commensurate with a level ofL = 0.
Rather, because the magnitude of the control system error is of
interest, the absolute value of the controlled process exceeding
a non-zero level,L, becomes the application-specific problem
of interest. Here again, there are two critical levels of interest,
one above the controlled process and one below. In this case,
neither is a stochastic critical level, and both static, fixed
thresholds are symmetric about zero and the negative of each
other. As such, there is no need to design independent alarm
systems that are implemented in parallel. Rather, a single
alarm system can be designed to predict all necessary crossing
events.

III. G ENERAL APPROACH

In certain cases, specifically for the type of level-upcrossing
events relevant to the thermal comfort application, the compli-
cated multi-dimensional level-crossing event can be approxi-
mated using a variety of methods. The theoretical derivations
and comparisons of these different approximations are left out
of this article for clarity of presentation. We refer readers to
[3] for more details. While cumbersome to present here, a
thorough understanding of these details is necessary to fully
appreciate the notation used in subsequent sections.

Therefore, we introduce the basic notation as a convenience
to the reader in the following section. The main notational
emphasis will be on characterization of the crossing events
in order to determine alarm regions resulting from use of
the likelihood ratio resulting in the conditional inequality:
P (C|D) ≥ Pb. This basically says “give alarm when we the
conditional probability of the event,C, exceeds the levelPb.”
Here,D represents data being conditioned on, andPb repre-
sents some optimally chosen border or threshold probability
with respect to a relevant alarm system metric. It is necessary
to find the alarm regions in order to design the alarm system.

Alarm design requires computation of the metrics that char-
acterize the tradeoff that all such systems contend with. This
tradeoff represents the balance of false alarms versus missed
detections. There are several alarm system metrics to choose
from, among them are the ROC curve, percent accuracy,
precision-recall curve, and Type I/II error probabilities, all for
various border probabilities (Pb). Type I/II error probabilities
are the probabilities of false alarm and missed detection,
respectively. In alarm design, we want to find the value of
Pb that provides the best tradeoff between Type I and Type II
errors, or one of the other alarm system metrics. For the first
example involving the thermal comfort application, most of the
analysis was performed by using Type I/II error probabilities.
However, for the spacecraft propulsion system application,
the ROC curve will be the metric used for comparison of
algorithms. The reason for using the ROC curve is that it is
more reliable in the face of uneven examples of nominal vs.
anomalous behavior, as described in [16].

It is not possible to obtain the exact alarm system metrics
analytically, or even by means of numerical integration for the
complicated multi-dimensional events we will present here.
As an alternative, we may perform simulations to obtain an
estimateof the exact alarm system metrics. These simulation-
based statistics have well known estimation error properties.
They are obtained by running a Kalman predictor, and count-
ing the number of correct/false alarms and missed detections
until their relative frequencies converge to limiting probability
values. However, with the aid of some approximations, we
can perform numerical integrations of complex integrals, and
can avoid these otherwise often very time and computationally
intensive simulation runs.

In some cases the number of terms required to compute the
relevant probability-based alarm system metrics scale expo-
nentially with the number of time steps under consideration.
This is particularly true for the types of level crossing events
characterizing complaints for the thermal comfort applica-
tion. As such, approximations are developed to reduce the
resulting computational burden. One approximation, the multi-
dimensional approximation, can characterize either of the two
null hypotheses to be introduced and tested in the subsequent
sections. Both correspond to the breakdown of the periods
of interest into two distinct timeframes presented previously.
Although this is the approximation in which the number of
terms scale exponentially with the number of steps in the time
interval, it may also be used to test null hypotheses which
quantify any combination of upcrossings, downcrossings, or
exceedances.

The multivariate probability computations that result from
the theory presented later are performed by using Genz’s al-
gorithm [17]. This algorithm is based upon a robust technique
designed to be used for integrations in multiple dimensions.
Traditionally, this code is more effective and computationally
efficient for higher-dimensional integrations, but can be used
just as well for lower-dimensional ones. As such, it helps
to mitigate the exponentially scaling computational burden.
Furthermore, it provides an anecdote to computing integrals of
the form necessary for the design of not only optimal alarm
systems, but also other failure detection algorithms such as
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the one most often used by Kerr [18], who specifically cites
issues with the computation of these types of integrals.

One might question the merit of using such an unavoidably
costly and potentially computationally intensive technique
to design an alarm system, when a simpler one might do.
There are several different types of alarm systems, ranging
in frequency of use and expense. At one end, we have
alarm systems that require little economic investment other
than the accumulation of man-hours of heuristic knowledge.
These systems, although quite inexpensive and often lacking
in sophistication, tend to be the most ubiquitous in engineering
systems. For the most part, they tend to the job that is required
of them: to give alarm for prevention of catastrophic events.
False alarms would cause loss of production and capital due
to system downtime from the inevitable system shutdown as
a result of the alarm. However, missed detections may cause
damage, complete system destruction or loss of life, where the
costs are immeasurable. Since complex engineering systems
may encounter events that need to be predicted by these simple
alarm systems, more sophisticated alarm systems may be of
interest. The following list provides a variety of alarm systems
to be compared on an application-specific level, ranging from
the most simple one to the more sophisticated ones alluded to
previously.

A. “Redlines” or Simple Alarm System

Typically there is no computational design cost for this type
of alarm system, but rather the cost lies in the knowledge
and experience of the users, i.e., heuristics. The basic idea
is that certain thresholds are chosen apriori to provide a
window of operation within which a random or controlled
process with random components should be constrained. This
alarm system will be investigated for the spacecraft propulsion
system example only.

B. Predictive Alarm System

An alarm system that uses a predictive method is often
called a näıve alarm system [6], [1], [2]. Here, a predicted
future process value would trigger an alarm if it exceeds some
fixed, pre-selected alarm threshold. However, even though the
predictor may be optimal in the least-squares sense, the alarm
system would not be optimal in the sense that it triggers
the fewest false alarms for a fixed detection probability. This
alarm system will be investigated for the spacecraft propulsion
system example only.

C. Optimal Alarm Systems

Described before, an optimal alarm system is derived based
upon a likelihood ratio criterion via the Neyman-Pearson
lemma. The resulting optimal alarm system requires the use
of predicted future process values to elicit the fewest possible
false alarms for a fixed detection probability. As stated earlier,
there are several approximations which may be used as an
alternative to designing the optimal alarm system based upon
simulation, i.e., the “counting method.” These approximations
are listed below, and are the ones to be studied in depth in
this paper.

1) Two-Dimensional Alarm System:Also called a semi-
näıve alarm system in the literature [1], [2], it uses the idea of
optimal alarm. However, the two-dimensional alarm region is
approximated with asymptotes to “rectangularize” it, making
the region of integration much easier to define. This alarm
system will be investigated for both applications.

2) Multiple Sub-Interval Alarm System:We may also use
the union of disjoint sub-intervals to approximate the exact
alarm region. This approximation was again a recommendation
of Svensson [1], although not elaborated on in detail, and only
meant to capture a single level crossing over a time period.
Multiple level crossings over a time period often involve
complicated multi-dimensional events. Therefore, aggregating
less complicated 2-dimensional alarm regions reduces the
computational load and increases mathematical tractability.
Each sub-interval can be approximated with asymptotes, again
making the regions of integration much easier to define. This
alarm system will be investigated for the thermal sensation
complaint example only.

3) Multi-Dimensional Alarm System:The exact alarm sys-
tem metrics cannot feasibly be obtained for complicated
multi-dimensional events by means of numerical integration.
However, an approximate alarm region of integration can be
defined as a tight bound on the exact region via the unions
and/or intersections of hyperplanes. In certain cases, this
approximation forms a semi-infinite hyper-rectangular region
in Rn, wheren is the dimension of the space, or number of
predictive time steps under consideration. This alarm system
will be investigated for both applications.

IV. T HEORY

A. Kalman Filtering and Prediction

Before attempting to technically characterize the alarm
regions of interest or explain the approximation methods, it
is necessary to address the basic mathematical paradigms that
we’ll use. As such, let’s assume that a stationary, Gaussian,
random process can be characterized in state-space as a typical
linear system of the form

qk+1 = Aqk + wk (1)

xk = Cqk + vk

where qk is the unobserved state of the process with
measured outputxk. Apriori statistics for the input and mea-
surement noise sequences,wk andvk, also need to be defined.
Their covariances are

Q
4
= E[wkwT

k ]

R
4
= E[vkvT

k ]

We also assumewk and vk are zero-mean Gaussian white
noise sequences without loss of generality, such thatwk ∼
N (0,Q) andvk ∼ N (0, R).

Propagation of theunconditional covariance matrix is
shown below in Eqn. 2.

Pk+1 = APkAT + Q (2)
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wherePk
4
= E[qkqT

k ].
The algebraic equivalent to this propagation equation is

PL
ss = APL

ssA
T + Q, where PL

ss Â 0 (PL
ss is positive

definite) and it is also the solution to this discrete algebraic
Lyapunov equation. The time and measurement update steps
of the recursive Kalman filtering equations are shown in Eqns.
3-5. Eqn. 4 represents the Kalman gain.

q̂k+1|k = Aq̂k|k (3)

Fk+1|k
4
= Pk+1|kCT (CPk+1|kCT + R)−1 (4)

q̂k+1|k+1 = q̂k+1|k + Fk+1|k(xk+1 −Cq̂k+1|k) (5)

whereq̂k|k
4
= E[qk|x0, . . . , xk].

The counterpartconditional covariance propagation time
and measurement updates for the Kalman filter are shown in
Eqns. 6-7, respectively.

Pk+1|k = APk|kAT + Q (6)

Pk+1|k+1 = Pk+1|k − Fk+1|kCPk+1|k (7)

where

Pk|k
4
= E[(qk − q̂k|k)(qk − q̂k|k)T |x0, . . . , xk]

Combining the two equations 6 and 7, we obtain the
following:

Pk+1|k = APk|k−1AT −AFk|k−1CPk|k−1AT + Q (8)

The stationary version of Eqn. 8 gives us the solution to the
discrete algebraic Riccati equation, as follows:

PR
ss = APR

ssA
T −AFssCPR

ssA
T + Q (9)

Fss
4
= PR

ssC
T (CPR

ssC
T + R)−1 (10)

whereFss represents the steady-state Kalman gain. How-
ever, we’re interested in the updated aposteriori steady-state
covariance matrix, which is the stationary version of Eqn. 7
given by:

P̂R
ss = PR

ss −PR
ssC

T (CPR
ssC

T + R)−1CPR
ss (11)

Because we’re primarily concerned withprediction, we will
need to compute variances of the form

Vk+i|k
4
= Var(xk+i|x0, . . . , xk)

and covariances of the form

cov(xk+i, xk+j |x0, . . . , xk)

where i, j are prediction window indices for future process
values. It can be shown thatVk+i|k and its covariance coun-
terparts are functions ofPk|k and Pk, and thereforeP̂R

ss,
and PL

ss, respectively. As a result, they can be expressed as
being independent of the time indexk, although they cannot
be expressed as being independent of the prediction window

indicesi, j. Similarly, we will need to compute the predicted
future process valuêxk+i|k.

x̂k+i|k
4
= E[xk+i|x0, . . . , xk] (12)

= CE[qk+i|x0, . . . , xk] (13)

= Cq̂k+i|k (14)

Obviously, x̂k+i|k can be expressed as a function ofq̂k|k,
but unlike Vk+i|k, it will fluctuate as new measurements are
made. This is apparent due to Eqn. 5, which is directly
dependent upon measurementsxk+1.

B. Alarm Regions for Crossing Events and their Approxima-
tions

1) Thermal Comfort Level Crossings:We first present
the conditions for alarm based upon the thermal sensation
complaint application. The null hypothesis,H0, shown in
Eqn. 15 is for at least one complaint during normal building
operating hours, wherem refers to the number of steps in the
prediction window. Them + 1 dimensional event region is
given byΩCexact

.

H0 : (X ∈ ΩCexact ⊂ Rm+1) (15)

X =




xk

...
xk+m




Cexact = {X ∈ ΩCexact ⊂ Rm+1}
= ¬{xk < L, . . . , xk+m < L} \ {xk > L}

In Eqn. 15,¬ is the logical equivalent ofnot, and the event
given by {xk < L, . . . , xk+m < L} refers to the fact that
there are no level crossings ofL = 0 (complaints) from time
k to k + m, or xj < L,∀j ∈ {k, . . . , k + m}. The \ notation
denotes set subtraction of the event defined by{xk > L},
which corresponds to arrival complaints.

In this case, the condition for alarm leads to the inequality
shown in Eqn. 16, via the Neyman-Pearson lemma [1], [2].
This inequality and Eqn. 15 are meant to characterize the
“operating complaints only” scenario as accurately as possible.
In Eqn. 15, operating complaints can be defined with any se-
quence of process values above or below the critical threshold,
as long asall of the values don’t lie above the threshold, and
the first process value is not above the threshold (to keep from
counting arrival complaints).

P (xk < L|D)− P (xk < L, . . . , xk+m < L|D) ≥ Pb (16)

where:D = {x0, . . . , xk}. The corresponding exact alarm
condition can be partitioned as follows:

Aexact
4
= {X̂ ∈ ΩAexact ⊂ Rm+1}
= {X̂ : P (Cexact|D) ≥ Pb}
= {X̂ : P (xk < L|D)

−P (xk < L, . . . , xk+m < L|D) ≥ Pb}
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where:

X =




xk

xk+1

...
xk+m


 , X̂ = E[X|D] =




x̂k|k
x̂k+1|k

...
x̂k+m|k




Hence it is easy to write the formulae for correct
alarms/detections:

Let x =
[
X
X̂

]
(17)

Correct Alarm:

P (Cexact|Aexact) =
P (Cexact, Aexact)

P (Aexact)
(18)

=

∫
ΩCexact

∫
ΩAexact

N (x;µx, Σx) dx
∫
ΩAexact

N (X̂;µX̂,ΣX̂) dX̂
Correct Detection:

P (Aexact|Cexact) =
P (Cexact, Aexact)

P (Cexact)
(19)

=

∫
ΩCexact

∫
ΩAexact

N (x;µx, Σx) dx
∫
ΩCexact

N (X;µX,ΣX) dX

These probabilities are necessary in order to compute the
required alarm system metrics, in particular the Type I/II error
probabilities. The probability of correct alarm measures the
ability not to generate false alarms (purity), and the probability
of correct detection measures that ability not to miss any
critical anomalies (completeness). We know that computing
these integrals, specifically the alarm region,Aexact, is an
intractable problem. Therefore we must use a simulation to
obtain estimates of theexactType I/II error probabilities. But
instead of using this “counting” method via simulation, we
can compute their tractable and much less computationally
intensive approximations.

The first approximation for the exact alarm region corre-
sponding to operating complaints only and given byAexact =
{X̂ : P (xk < L|D)− P (xk < L, . . . , xk+m < L|D) ≥ Pb} is
a single interval two-dimensional approximation. In this case
we only consider two time slices,{i = 0, i = m}, which
span the entire time interval being considered. The process
value,xk+i is below the critical threshold at the very beginning
of the interval, xk, and above it at the very end,xk+m.
The exact null hypothesis captures at least one complaint
or upcrossing, where the process itself is not restricted to
being above or below the critical threshold at the end of the
interval. Therefore, this approximation will miss around half
of the upcrossings/complaints caught by the exact condition.
However, using it will greatly reduce computation time, and
the answer can be achieved via numerical integration, without
the use of simulation.

The upcrossing approximation is shown in Eqns. 20-24. By
using it, not only do we reduce the dimension of the alarm
region fromm + 1 to 2, shown in the first step via Eqn. 20,
but a “rectangularized” two-dimensional approximation is used
for further ease of computation. Recall that a two-dimensional
alarm system is one that actually uses the idea of optimal

alarm. The exact2D alarm region is approximated with
asymptotes, making the revised region of integration much
easier to parameterize. The “rectangularization” is apparent in
Fig. 1.

To find the asymptote corresponding tox̂k|k, we derive the
limiting distribution as the remaining dimension is marginal-
ized by takinglimx̂k+m|k→∞ of Eqn. 20, yielding Eqn. 21,

P (xk < L, xk+m > L|x0, . . . , xk) ≥ Pb (20)

lim
x̂k+m|k→∞

P (xk < L, xk+m > L|x0, . . . , xk) =

P (xk < L|x0, . . . , xk)

P (xk < L|x0, . . . , xk) ≥ Pb

m

x̂k|k < L−
√

Vk|kΦ−1(Pb) (21)

where Φ−1(·) represents the inverse cumulative normal
standard distribution function. Similarly, to find the asymptote
corresponding tox̂k+m|k, we derive the limiting distribu-
tion as the remaining dimension is marginalized by taking
limx̂k|k→−∞ of Eqn. 22, yielding Eqn. 23.

P (xk < L, xk+m > L|x0, . . . , xk) ≥ Pb (22)

lim
x̂k|k→−∞

P (xk < L, xk+m > L|x0, . . . , xk) =

P (xk+m > L|x0, . . . , xk)

P (xk+m > L|x0, . . . , xk) ≥ Pb

m

x̂k+m|k > L +
√

Vk+m|kΦ−1(Pb) (23)

where:

Vk+i|k
4
= Var(xk+i|x0, . . . , xk) (24)

= C(Ai(P̂R
ss −PL

ss)(A
T )i + PL

ss)C
T + R

The alarm region can therefore be approximated by the two-
dimensional intersection of the two inequalities represented in
Eqns. 21 and 23.

Notice that there are several two-dimensional alarm regions
shown in Fig. 1, for values ofPb ranging from0.1 to 0.9, in
gradations of0.1, all for m = 5. Each of the regions is convex,
above and to the left of which is considered the alarm region.1

However, performing an integration over this two-dimensional
alarm region may require storing the contour points along its
border, or other approximation methods that consume quite a
bit more compute cycles than the respective “rectangularized”
2D alarm region. For the specific case ofPb = 0.99, we can
see the asymptotes in Fig. 1 that define the approximation,
which bound the two-dimensional alarm region. Integration

1These sample alarm regions were generated by using a very simple
example (c.f. Process 1 from Svensson et. al. [2]) solely for illustrative
purposes at this point. None of the alarm regions are based on models
generated from experimental data.
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Fig. 1. Approximation to the2D Alarm Region forPb = 0.99

over this region is much easier, and the magnitude of the error
introduced by this additional approximation will not be on
par with the approximation of the “m + 1”-dimensional exact
region with a reduced2-dimensional region.

To improve upon the approximation introduced in the
previous section, and “catch” more of the cases missed by
the single two-dimensional interval, we can split the interval
into Ns disjoint two-dimensional subintervals, and construct
alarm systems for each subinterval. Here we’d like to compute
the relevant aggregate Type I/II error probabilities for the
entire interval in question, by taking theunion of the alarm
systems corresponding to each subinterval. Practically, this
means that if any one of theNs sub-interval based alarm
systems sound, then the alarm system as a whole sounds.
Obtaining the approximate two-dimensional alarm regions for
each subinterval is easy, and is based upon the same logic
in Eqns. 20-24. In order to determine the aggregate Type I/II
error probabilities, we use Eqns. 29-32. But first we need to
define the alarm sub-interval approximation provided in Eqns.
25-28.

First, recall:

Cexact = ¬{xk < L, . . . , xk+m < L} \ {xk > L} (25)

The resulting alarm sub-interval approximations are as fol-
lows:

Ai = {x̂k+si|k < Xsi , x̂k+si+1|k > Ysi+1} (26)

Xsi = L−
√

Vk+si|kΦ−1(Pb) (27)

Ysi+1 = L +
√

Vk+si+1|kΦ−1(Pb) (28)

where the extremes of the interval0 ≤ si, si+1 ≤ m
correspond to endpoints of all possible subintervals, given

by indices si and si+1. The approximate alarm region can

therefore be written asAapprox
4
=

⋃Ns

i=1 Ai. Formulae for
correct/false alarms and correct/missed detections can be de-
veloped, as shown in Eqns. 29-32.

Correct Alarm:

P (Cexact|Aapprox) =
P (Cexact, Aapprox)

P (Aapprox)
(29)

Correct Detection:

P (Aapprox|Cexact) =
P (Cexact, Aapprox)

P (Cexact)
(30)

False Alarm:

P (C
′
exact|Aapprox) =

P (C
′
exact, Aapprox)
P (Aapprox)

(31)

= 1− P (Cexact|Aapprox)
Missed Detection:

P (A
′
approx|Cexact) =

P (Cexact, A
′
approx)

P (Cexact)
(32)

= 1− P (Aapprox|Cexact)

In order to compute the deceivingly simple-looking for-
mulae in Eqns. 29-32, we need more detailed equations for
P (Aapprox), P (Cexact, Aapprox), and P (Cexact), which are
provided in [3]. Recall that the central idea of the multiple
subinterval approximation method is that less complicated 2-
dimensional alarm regions are aggregated, thus reducing the
computational load and increasing mathematical tractability.
Each sub-interval can be approximated with asymptotes, again
making the regions of integration much easier to define. The
case used to illustrate the approximation above was for a fixed
critical threshold, considering operating complaints only.

If we were to have considered both arrival and operating
complaints, a different alarm region would have resulted. As
such, it is worthwhile to consider the fact that arrival com-
plaints are defined as “exceedances,” defined earlier. Because
exceedances are defined in single time slices, we don’t know
about the arrival complaint until the exceedance terminates in
some subsequent time slice. Therefore, the arrival complaint
may best be determined with knowledge of a downcrossing,
as opposed to an upcrossing.

The final approximation method is meant to provide the best
possible approximation to the alarm region for the thermal
sensation complaint application, given byAexact = {X̂ :
P (xk < L|D) − P (xk < L, xk+1 < L, . . . , xk+m < L|D) ≥
Pb}. We know that the alarm region does not serve as a
well-defined region of integration. Therefore, theexactalarm
system metrics cannot feasibly be obtained for complicated
multi-dimensional events by means of numerical integration.
To illustrate this fact, Fig. 2 shows the exact alarm region, for
operating complaints only, whenm = 3 and the multivariate
Gaussian integrand is4-dimensional. The alarm region is
aboveand to the left of the surface shown.2

It is apparent from the figure that the surface of the exact
alarm region boundary is quite complex and does not serve

2This is also a sample alarm region generated by the same example as in
Fig. 1. It is provided solely for illustrative purposes at this point and not based
on models generated from experimental data.
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Fig. 2. Exact Alarm Region form = 3

as a feasible, parameterizable integration region. However, an
approximate volume can be defined as a tight bound on the
exact region via the unions and/or intersections of planes.
This approximation forms a semi-infinite hyper-rectangular
region in multi-dimensional space. For operating complaints
only, the region of integration,Aapprox, has the following
representation:

Aexact
4
= {X̂ ∈ ΩAexact ⊂ Rm+1}
= {X̂ : P (xk < L|D)−

P (xk < L, . . . , xk+m < L|D) ≥ Pb}
m Multi-dimensional approximation

Aapprox
4
= {X̂ ∈ ΩAapprox ⊂ Rm+1}

=

{
X̂ : A0

⋂ [
m⋃

i=1

Ai

]}
(33)

whereA0
4
= x̂k|k ≤

X0︷ ︸︸ ︷
L−

√
Vk|kΦ−1(Pb)

Ai
4
= x̂k+i|k ≥ L +

√
Vk+i|kΦ−1(Pb)

︸ ︷︷ ︸
Yi

∀i ∈ 1, . . . , m

The multi-dimensional approximation shown in the chain of
logic above can be further elaborated on. For all asymptotes
corresponding tôxk+i|k, ∀i > 0, we have:

lim
X̂\x̂k+i|k→−∞

P (xk < L|D)−P (xk < L, . . . , xk+m < L|D) =

1− P (xk+i < L|x0, . . . , xk)

and
1− P (xk+i < L|x0, . . . , xk) ≥ Pb, ∀i > 0

m
m⋃

i=1

Yi (34)

Furthermore, for the remaining asymptote corresponding to
x̂k|k, we have:

lim
X̂\x̂k|k→∞

P (xk < L|D)− P (xk < L, . . . , xk+m < L|D) =

lim
X̂\x̂k|k→∞

P (xk < L, xk+1 > L, . . . , xk+m > L︸ ︷︷ ︸
xk+i>L,∀i∈[1,m]

|D) + . . .

lim
X̂\x̂k|k→∞

∑

j

P (xk < L, Tj |D)

where

Tj
4
=

{
m⋂

i=1

(xk+i > L ∨j xk+i < L) | ∃i : xk+i < L

}

lim
X̂\x̂k|k→∞

P (xk < L, xk+1 > L, . . . , xk+m > L︸ ︷︷ ︸
xk+i>L,∀i∈[1,m]

|D) =

P (xk < L|x0, . . . , xk)

and due to the definition of the setTj , if ∃i : xk+i < L,
then

lim
X̂\x̂k|k→∞

∑

j

P (xk < L, Tj |D) = 0

Therefore

lim
X̂\x̂k|k→∞

P (xk < L|D)− P (xk < L, . . . , xk+m < L|D) =

P (xk < L|x0, . . . , xk)

and
P (xk < L|x0, . . . , xk) ≥ Pb

m

x̂k|k ≤ L−
√

Vk|kΦ−1(Pb) (35)

Taking the intersection of Eqns. 34 and 35 yields the
approximation shown in Eqn. 33. A similar procedure can
be used to derive the multi-dimensional approximation to the
alarm region for both arrival and operating complaints. In this
case, the null hypothesis and resulting level-crossing event
changes, as shown below in Eqn. 36.

H0 : (X ∈ ΩCexact ⊂ Rm+1) (36)

X =




xk+d

...
xk+d+m




Cexact = {X ∈ ΩCexact ⊂ Rm+1}
= ¬{xk+d < L, . . . , xk+d+m < L}
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The resulting the region of integration,Aapprox, has the
following representation:

Aexact
4
= {X̂ ∈ ΩAexact

⊂ Rm+1}
= {X̂ : 1− P (xk+d < L, . . . ,

xk+d+m < L|D) ≥ Pb}
m Multi-dimensional approximation

Aapprox
4
= {X̂ ∈ ΩAapprox

⊂ Rm+1}

=

{
X̂ :

m⋃

i=0

Ai

}
(37)

=

{
X̂ :

m⋃

i=0

x̂k+d+i|k ≥ Yd+i

}

Eqn. 37 gives the approximation for the candidate region of
integration for both arrival and operating complaints, and can
be derived for all asymptotes corresponding tox̂k+d+i|k, ∀i ≥
0, as follows:

lim
X̂\x̂k+d+i|k→−∞

1− P (xk+d < L, . . . , xk+d+m < L|D) =

1− P (xk+d+i < L|x0, . . . , xk)

and

1− P (xk+d+i < L|x0, . . . , xk) ≥ Pb,∀i ≥ d

m
m⋃

i=0

x̂k+d+i|k ≥ L +
√

Vk+d+i|kΦ−1(Pb)
︸ ︷︷ ︸

Yd+i

Note that the future predicted values do not begin untild
steps out, in order to allow for a finite window of prediction
prior to the beginning of the day. This is distinct from them
steps corresponding to the prediction window during normal
building operating hours. The formulae for correct/false alarms
and correct/missed detections for both cases are similar to the
ones shown in Eqns. 29-32. Again, the computational details of
P (Aapprox), P (Cexact, Aapprox), andP (Cexact) are omitted
here for the sake of clarity, and are provided in [3].

2) Spacecraft Propulsion System Anomaly Detection Appli-
cation: As with thermal sensation complaints, anomalies that
occur within a spacecraft propulsion system may not have a
direct operational mapping to any one type of level-crossing
event. Therefore, we will provide a comprehensive review of
many different examples within the class of level-crossing
events having a fixed threshold. The examples are listed with
detailed explanations, all of which use a prediction window
denoted byd.

a) Up/downcrossing event spanning an interval:This
event is very similar to the single interval two-dimensional
approximation described previously for thermal sensation
complaints. Recall that two time slices spanning the entire
time interval {|xk| < L, |xk+d| > L} are considered. The
main difference is that the absolute value of the process is
considered, mimicking an envelope detection problem. The

logic for this stems from the fact that the control system
error is the primary parameter of interest, which can be either
positive or negative. Therefore, the process value is within
the interval[−L,L] at the very beginning of the interval, and
outside of it at the very end. The probabilityP (Cexact) is
shown in Eqn. 38, and is the same regardless of the alarm
system used.

P (Cexact) = P (|xk| < L, |xk+d| > L) (38)

=
∫ −L

−∞

∫ L

−L

N (x; µx,Σx) dx + . . .

∫ ∞

L

∫ L

−L

N (x; µx, Σx) dx

x =
[

xk

xk+d

]
, µx =

[
Cµq

Cµq

]
∈ R2

Σx =
[

CPL
ssC

T + R CPL
ss(A

T )dCT

CAdPL
ssC

T CPL
ssC

T + R

]

µq
4
= E[qk]

b) End of interval up/downcrossing event:This event
is similar to an up/downcrossing event spanning an interval,
except that the two time slices are adjacent and the event
occurs at the very end of interval, shown mathematically in
Eqn. 39.

Cexact
4
= {|xk+d| < L, |xk+d+1| > L} (39)

The probabilityP (Cexact) is shown in Eqn. 40, and is also
the same regardless of the alarm system used.

P (Cexact) = P (|xk+d| < L, |xk+d+1| > L) (40)

=
∫ −L

−∞

∫ L

−L

N (x; µx,Σx) dx + . . .

∫ ∞

L

∫ L

−L

N (x; µx,Σx) dx

x =
[

xk+d

xk+d+1

]

Σx =
[

CPL
ssC

T + R CXssCT

CXssCT CPL
ssC

T + R

]

Xss = AdPL
ss(A

d+1)T + Lss −AdPL
ss(A

d)T

Lss = ALssAT + AQ

c) End of interval exceedance/fade event:This event is
similar to the end of interval up/downcrossing event, only
differing in the fact that an exceedance is a one-dimensional
event. Therefore, the level crossing condition reduces to Eqn.
41.

Cexact
4
= {|xk+d| > L} (41)

The probability P (Cexact) is shown in Eqn. 42, and is
also equivalent to thep-value. This important relationship has
practical value and will be discussed later.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-XX, NO. X, XXX 2007 10

P (Cexact) = P (|xk+d| > L) (42)

= 2Φ


− L√

CPL
ssCT + R




= p

d) At least one exceedance/fade event within an interval:
This event was introduced by Kerr [10] as a problem for study,
and can be represented as shown in Eqn. 43.

Cexact
4
= {|xk| > L}

⋃



d⋃

j=1

[
j−1⋂

i=0

|xk+i| < L, |xk+j | > L

]


(43)
All exceedance sub-events in the expression are mutu-

ally exclusive. The expression represents all combinations
of exceedances within the given prediction window,d. The
probability P (Cexact) is shown in Eqn. 44.

P (Cexact) = P (|xk| > L) + . . .
d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L) (44)

= p +
d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L)

= p +
d∑

j=1

∫ ∞

L

∫ L

−L

. . .

∫ L

−L

N (xj ; µxj , Σxj ) dxj

+
d∑

j=1

∫ −L

−∞

∫ L

−L

. . .

∫ L

−L︸ ︷︷ ︸
j+1

N (xj ; µxj , Σxj ) dxj

xj =




xk

...
xk+j


 , µxj =




Cµq

...
Cµq


 ∈ Rj+1

Σxj (i1, i2) =
{

CPL
ssC

T + R 1 ≤ i1 = i2 ≤ j + 1
CXssCT 1 ≤ i1 6= i2 ≤ j + 1

Xss = Ai1PL
ss(A

i2)T + Lss −Ai1Lss(Ai1)T

Lss = ALssAT + Ai2−i1Q wherei1 < i2

µq
4
= E[qk]

e) At least one up/downcrossing event within an interval:
This event is identical to the previous level-crossing event
except that two-dimensional up/downcrossings are considered
in lieu of exceedances. The expression describing this event
is actually simpler, as in Eqn. 45.

Cexact
4
=

d⋃

j=1

{
j−1⋂

i=0

|xk+i| < L, |xk+j | > L

}
(45)

The probability P (Cexact) is shown in Eqn. 46, with
identical definitions ofxj , µxj , Σxj as in the previous case.

P (Cexact) =
d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L) (46)

=
d∑

j=1

∫ ∞

L

∫ L

−L

. . .

∫ L

−L

N (xj ;µxj
, Σxj

) dxj

+
d∑

j=1

∫ −L

−∞

∫ L

−L

. . .

∫ L

−L︸ ︷︷ ︸
j+1

N (xj ;µxj
, Σxj

) dxj

For each of the five listed cases:a-e, we will study and
compare the results of three distinct types of alarm systems,
previously introduced. The alarm system metrics of interest for
this application are the ROC curve statistics: the true and false
positive rates. Eqns. 47-48 summarize the formulae necessary
to compute these statistics. Notice that the true positive rate
shown in Eqn. 47 is identical to Eqn. 29, for the probability of
correct alarm, also know as recall. There is overlap here, and
there is also usefulness in looking at different alarm system
metrics, which is discussed at length in [16]. In general,
as long as the following three probability computations are
performed:P (Cexact), P (Aapprox), andP (Cexact, Aapprox),
any relevant alarm system metric can be derived.

True positive rate:

P (Cexact|Aapprox) =
P (Cexact, Aapprox)

P (Aapprox)
(47)

False positive rate:

P (Aapprox|C
′
exact) =

P (C
′
exact, Aapprox)
P (C ′

exact)
(48)

a) “Redlines” or Simple Alarm System:In order to
introduce the use of redlines we first make the distinction
between the critical level,L, and the redline, denoted as
LA. The critical level represents the threshold above which
damage or some significant decrease in quality of a behavior
or process may potentially occur. There are some cases in
which this critical level is not known, have not been designed
a priori, or when known critical levels yield alarm systems
that are practically infeasible. The latter case usually occurs
when the thresholds are set to levels so extreme that the
resulting probability computations default to null values. As
such, sometimes it is beneficial to use values that are based
upon statistical outlier detection and hypothesis testing via the
p-value. The relationship between the critical level,L, and the
p-value is shown in Eqn. 49

Lequiv = Φ−1
(
1− p

2

) √
CPL

ssCT + R (49)

The redline value given byLA is a different parameter
than the critical level,L, and essentially acts as a design
parameter with which to tune the alarm system sensitivity.
Its value is the level at which an alarm would literally sound,
and whose selection may be performed manually via brute
force gridding, or related to the use of a log-likelihood based
method. Using the log-likelihood based method provides an
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alternative method of design for the alarm system that is
essentially equivalent to choosing a redline value via theχ2

1

distribution using the following equations:

P (log(p(xk; 0,CPL
ssC

T + R)) < l) =

1− χ2
1

(
−2

[
l +

1
2

log(2π) + log
√

CPL
ssCT + R

])
=

2Φ

(
−

√
−2

[
l +

1
2

log(2π) + log
√

CPL
ssCT + R

])
=

2Φ
(−LAequiv

)

Therefore, Eqn. 50 represents the equivalent value forLA,
wherel is a design log-likelihood based threshold.

LAequiv
=

√
−2

[
l +

1
2

log(2π) + log
√

CPL
ssCT + R

]

(50)
In general, using the log-likelihood value as the basis for

outlier detection allows for greater accessibility of infinitesi-
mally small values of the significance level (i.e.,p = 1×10−8)
for the corresponding hypothesis-based decision test. A more
thorough discussion on the use of this approach for alarm
systems can be found in [9], [19] and [20]. Note that an
equivalentp-value for the design parameter,LA, can also be
found with Eqn. 49. The probability of alarm for a redline
alarm system regardless of level-crossing type is given by
Eqn. 51. Note that the alarm system never uses any predicted
future values, only the value at the current time, such that

Aapprox
4
= {|xk| > LA}.

P (Aapprox) = P (|xk| > LA) (51)

= 2Φ


− LA√

CPL
ssCT + R




As mentioned previously, the probability of the crit-
ical event, P (Cexact), as well as the probability of
alarm, P (Aapprox), and the joint probability of the two,
P (Cexact, Aapprox), suffice to compute any relevant alarm
system metrics. Since we already have the necessary formulae
for computing P (Cexact) and P (Aapprox), we provide the
detailed formulae forP (Cexact, Aapprox) in Appendix I.

b) Predictive Alarm System:The predictive alarm system
uses a similar fixed, static threshold,LA, akin to the redline
method. However, rather than the current process value,xk,
being used, predicted future values,x̂k+d|k, are compared to
the alarm level,LA. The probability of alarm for a predictive
alarm system regardless of level-crossing type is given by
Eqn. 52. For the case of the end of interval up/downcrossing
event, the predicted future value ofx̂k+d+1|k is used in lieu
of x̂k+d|k.

P (Aapprox) = P (|x̂k+d|k| > LA) (52)

= 2Φ


− LA√

CAd(PL
ss − P̂R

ss)(Ad)T CT




We present the formulae for computing the probability of
P (Cexact, Aapprox) for all level-crossing events of interest in
Appendix II.

c) Optimal Alarm System:The optimal alarm system
uses a concept introduced earlier, by defining the alarm region,
Aexact, as follows:

Aexact
4
= {X̂ : P (Cexact|{x0, . . . , xk}) ≥ Pb}

whereX̂ is a vector of all predicted future process values,
i.e., x̂k|k, x̂k+d|k that correspond to the future time steps
in the definition of the critical event,Cexact. In this case,
there is no fixed, static threshold,LA, akin to the redline or
predictive methods to act as a design parameter. However, the
border probability,Pb, acts in place ofLA as an alarm system
design parameter. As seen previously for the thermal sensation
complaint application, the alarm region can be approximated
easily by using a variety of methods which use inequalities
involving predicted future process values, i.e.,x̂k+d|k. De-
pending on the the type of event under consideration, the
approximation will vary. However, in general there are two
types of approximations that can be made for the spacecraft
propulsion system anomaly detection application.

Unlike the probability of alarm for a redline or predictive
alarm system, the optimal alarm system’s probability of alarm
is dependent on level-crossing type. As such, detailed formulae
for P (Aapprox) andP (Cexact, Aapprox) for all level-crossing
events of interest are provided in Appendix III. However, as
a precursor, we must derive the two types of approximations
to the alarm regions required for computation of these proba-
bilities. We begin with an up/downcrossing event spanning an
interval, whose alarm condition is shown in Eqn. 53.

P (|xk| < L, |xk+d| > L|x0, . . . , xk) ≥ Pb (53)

lim
|x̂k+d|k|→∞

P (|xk| < L, |xk+d| > L|x0, . . . , xk) =

P (|xk| < L|x0, . . . , xk)

m
P (|xk| < L|x0, . . . , xk) ≥ Pb (54)

The first approximation can be thought of as a “closed-
form” approximation, meaning that at least one of the re-
sulting inequalities involvingx̂k|k and x̂k+d|k can be ex-
pressed directly as a function of the model parameters. The
second approximation can be found as a one-dimensional
scalar nonlinear root-finding problem, [21]. The asymptote
corresponding tôxk|k for the first approximation can be found
in closed form by taking the intersection of the inequalities in
Eqns. 55-56, culminating in the alarm region represented by
Eqn. 57. An additional approximation is introduced by taking
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the intersection of these two inequalities. These inequalities
come from Eqn. 54, which is derived by finding the limiting
distribution as the remaining dimension is marginalized by
taking lim|x̂k+d|k|→∞.

P (xk < L|x0, . . . , xk) ≥ Pb (55)

P (xk > −L|x0, . . . , xk) ≥ Pb (56)

m
|x̂k|k| ≤ L−

√
Vk|kΦ−1(Pb) = L−A (57)

The closed-form approximations shown in Eqns. 53 and
57 are similar to the optimal two-dimensional alarm region
approximations from the previous application found in Eqns.
22 and 23, respectively. The sole difference is that|xk| is
used in place ofxk for the current example. The root-finding
approximation can be found by solving for the zeros off(x̂k|k)
shown in Eqn. 58, given a particular value ofPb, yielding the
asymptote for the alarm region corresponding tox̂k|k such
that |x̂k|k| ≤ L−A for f(x̂k|k) ≥ 0. Therefore, no additional
approximations are introduced beyond using the asymptotes
themselves.

f(x̂k|k) = Φ

(
L− x̂k|k√

Vk|k

)
− Φ

(
−L− x̂k|k√

Vk|k

)
− Pb (58)

When deriving the asymptote for̂xk+d|k, there is no limiting
approximation as in Eqn. 54. As such, in order to make a
closed-form approximation, we use an intuitive approach by
taking the union of the following inequalities, culminating in
the alarm region represented by Eqn. 59, again introducing an
additional approximation.

P (xk+d > L|x0, . . . , xk) ≥ Pb

P (xk+d < −L|x0, . . . , xk) ≥ Pb

m
|x̂k+d|k| ≥ L +

√
Vk+d|kΦ−1(Pb) = L+

A (59)

Although this provides a closed-form approximation, there
is inherently no mathematically defensible argument for doing
so. As such, we provide the more mathematically correct
approach, which is akin to the root-finding approximation
method, by solving for the zeros off(x̂k|k, x̂k+d|k) |x̂k|k=0

shown in Eqn. 60, given a particular value ofPb, yielding the
asymptote for the alarm region corresponding tox̂k+d|k such
that |x̂k+d|k| ≥ L+

A for f(x̂k|k, x̂k+d|k) |x̂k|k=0≥ 0.

f(x̂k|k, x̂k+d|k) = P (|xk| < L, |xk+d| > L|x0, . . . , xk)− Pb

(60)

=

(∫ L

−L

∫ ∞

L

+
∫ L

−L

∫ −L

−∞

)
N (x;µx, Σx) dx− Pb

where

x =
[

xk|k
xk+d|k

]
, µx =

[
x̂k|k

x̂k+d|k

]
∈ R2

Closed form approximations  (spanning event for 1 step)
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Fig. 3. Closed-form approximations for sample alarm regions

andΣx(i1, i2) =





CP̂R
ssC

T + R i1 = i2 = 1
C

[
Ad(P̂R

ss −PL
ss)

(
Ad

)T + PL
ss

]
CT + R i1 = i2 = 2

C
[
P̂R

ss −
(
AT

)d
]
CT i1 6= i2

Figs. 3 and 4 depict the qualitative nature of both the closed-
form and root-finding approximations to generic sample alarm
regions for values ofPb shown in gradations of 0.1, respec-
tively. These sample alarm regions are based on various levels
as shown in the titles of the subplots in the figures and the
following covariance matrix:

Σx =
[

16 6
6 9

]

This simple covariance matrix was generated by forming a co-
variance matrix based upon the following standard deviations
of the random vectorx: [

4
3

]

The correlation coefficient used isρ = 0.5 in order to simulate
the eccentricity that would most likely be introduced in real
data so as to illustrate that the data are not independent, but
correlated.3

These alarm regions are based upon Eqn. 53, and the closed-
form and root finding approximations are shown in Figs. 3 and
4, respectively. Looking very closely at the figures, one can see
the exact plots are represented by the curved regions, and are

3As such, these sample alarm regions are again generated solely for
illustrative purposes and are not based on models generated from experimental
data.
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Root finding approximations (spanning event for 1 step)
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Fig. 4. Root-finding approximations for sample alarm regions

approximated by the rectangular bounds that represent both the
closed-form and root finding approximations. Improvement in
the approximations can be discerned by closely examining the
tightness of the rectangular bounds. Notice that the approxima-
tions improve asL increases in both Figs. 3 and 4 due to the
eccentricity of the alarm regions. In contrast, for smaller values
of L, and asPb increases, the closed-form approximation
worsens as seen in Fig. 3. The same is true for the root-finding
method, however, as seen in Fig. 4, the asymptotic bounds
are tighter. This implies that the alarm region represented by
Eqns. 57 and 59 (closed-form approximation) provide a poorer
approximation to the alarm region than with Eqns. 58 and 60,
when using the root-finding method.

The alarm condition for an end of interval up/downcrossing
event is shown in Eqn. 61.

P (|xk+d| < L, |xk+d+1| > L|x0, . . . , xk) ≥ Pb (61)

We will forgo the derivations of the two types of approxi-
mations to the alarm regions, as they are similar to those for
the up/downcrossing event spanning an interval. As such, the
resulting closed form alarm regions are shown in Eqns. 62 and
63.

|x̂k+d|k| ≤ L−
√

Vk+d|kΦ−1(Pb) = L−A (62)

|x̂k+d+1|k| ≥ L +
√

Vk+d+1|kΦ−1(Pb) = L+
A (63)

The resulting root-finding alarm regions are governed
by the same inequalities in Eqns. 62 and 63.L−A and

L+
A can be found by solving forf(x̂k+d|k) ≥ 0 and

f(x̂k+d|k, x̂k+d+1|k) |x̂k+d|k=0≥ 0, where

f(x̂k+d|k) = Φ

(
L− x̂k+d|k√

Vk+d|k

)
− Φ

(
−L− x̂k+d|k√

Vk+d|k

)
− Pb

andf(x̂k+d|k, x̂k+d+1|k) =

P (|xk+d| < L, |xk+d+1| > L|x0, . . . , xk)− Pb

=

(∫ L

−L

∫ ∞

L

+
∫ L

−L

∫ −L

−∞

)
N (x; µx, Σx) dx− Pb

where

x =
[

xk+d|k
xk+d+1|k

]
, µx =

[
x̂k+d|k

x̂k+d+1|k

]
∈ R2

andΣx(i1, i2) =




CPk+d|kCT + R i1 = i2 = 1
CPk+d+1|kCT + R i1 = i2 = 2

CXssCT i1 6= i2

where

Pk+d|k
4
= Ad(P̂R

ss −PL
ss)

(
Ad

)T
+ PL

ss

Pk+d+1|k
4
= Ad+1(P̂R

ss −PL
ss)

(
Ad+1

)T
+ PL

ss

Xss = Ad
[
P̂R

ss (A)T − Lss

] (
Ad

)T
+ Lss

andLss = ALssAT + AQ
The alarm condition for an end of interval exceedance/fade

event is shown in Eqn. 64.

P (|xk+d| > L|x0, . . . , xk) ≥ Pb (64)

Again, we will forgo the derivations of the two types of
approximations to the alarm regions, as they are similar to
those for the previous cases. As such, the resulting closed
form alarm region is shown in Eqn. 65.

|x̂k+d|k| ≥ L +
√

Vk+d|kΦ−1(Pb) = L+
A (65)

The resulting root-finding alarm regions are governed by
the same inequality in Eqn. 65.L+

A can be found by solving
for f(x̂k+d|k) ≥ 0, where

f(x̂k+d|k) = Φ

(
x̂k+d|k + L√

Vk+d|k

)
+ Φ

(
−x̂k+d|k − L√

Vk+d|k

)
− Pb

The alarm condition for at least one exceedance/fade event
within an interval isP (Cexact|D) = P (Cexact|x0, . . . , xk) ≥
Pb, and is expanded in Eqn. 66.

P (|xk| > L|D) +
d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L|D) ≥ Pb

(66)
To determine the approximations to the alarm regions, we

can again use either the closed-form or root-finding methods.
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Using the closed-form approximation, we intuitively use the
same logic as in previous cases. Specifically, we can use an
extension of the alarm region found in the derivation of Eqn.
37, even though it was presented for a different application.
As such, the closed form approximation can be represented for
all asymptotes corresponding to|x̂k+i|k|, ∀i ≥ 0, as shown in
Eqns. 67 and 68.

Aapprox =
d⋃

i=0

|x̂k+i|k| ≥ L +
√

Vk+i|kΦ−1(Pb)
︸ ︷︷ ︸

L+
Ai

(67)

Using the root-finding approximation, the same union of
inequalities applies, as in Eqn. 68.

Aapprox =
d⋃

i=0

|x̂k+i|k| ≥ L+
Ai

(68)

However, the alarm region can now be found by the inequal-
ity f(X̂) |X̂\x̂k+i|k=0≥ 0, where the asymptotes,L+

Ai
can be

found by solving for the zeros off(X̂) = P (Cexact|D)−Pb =

P (|xk| > L|D) +
d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L|D)− Pb

= Φ

(
x̂k|k + L√

Vk|k

)
+ Φ

(
−x̂k|k − L√

Vk|k

)
+ . . .

d∑

j=1

∫ ∞

L

∫ L

−L

. . .

∫ L

−L

N (xj ; µxj ,Σxj )dxj + . . .

d∑

j=1

∫ −L

−∞

∫ L

−L

. . .

∫ L

−L︸ ︷︷ ︸
j+1

N (xj ; µxj ,Σxj ) dxj

xj =




xk|k
...

xk+j|k


 , µxj =




x̂k|k
...

x̂k+j|k


 ∈ Rj+1

Σx(i1, i2) =
{

CPk+i1|kC
T + R i1 = i2

CXssCT i1 6= i2

where

Pk+i1|k
4
= Ai1(P̂R

ss −PL
ss)

(
Ai1

)T
+ PL

ss

Xss = Ai1
[
P̂R

ss

(
Ai2−i1

)T − Lss

] (
Ai1

)T
+ Lss

andLss = ALssAT + AQ
This alarm region may span many dimensions, but can

also be shown in two or three dimensions. As such, we
provide Figs. 5 and 6, which illustrate the qualitative nature
of both the closed-form and root-finding approximations in
two dimensions for sample alarm regions, as in Figs. 3 and 4.
Again, we see that the root-finding approximation provides
a better bound on the alarm region than the closed-form
approximation. We also show a sample three dimensional
alarm region in Fig. 7, for illustrative purposes. The same
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Fig. 5. Closed-form approximations for multiple exceedance alarm region

approximations can be used to form a hypercube, outside of
which integrations to compute relevant alarm statistics may be
performed.

Root finding approximations (at least one exceedance in 2 steps)
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Fig. 6. Root-finding approximations for multiple exceedance alarm region

Finally, for at least one up/downcrossing event
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Fig. 7. Multiple exceedance alarm region in 3 dimensions

within an interval, the alarm condition,P (Cexact|D) =
P (Cexact|x0, . . . , xk) ≥ Pb, is expanded in Eqn. 69.

d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L|D) ≥ Pb (69)

To determine the approximations to the alarm regions, we
can again use either the closed-form or root-finding methods.
Both approximations can be represented identically for all
asymptotes corresponding to|x̂k+i|k|, ∀i ≥ 1, as shown previ-
ously in Eqns. 67 and 68. However, here these approximations
are good only for the asymptotes∀i ≥ 1 as distinct from
∀i ≥ 0 with at least one exceedance/fade event within an
interval. The alarm region approximations for this subspace
are represented by Eqns. 70 and 71, for the closed-form and
root-finding methods, respectively.

d⋃

i=1

|x̂k+i|k| ≥ L +
√

Vk+i|kΦ−1(Pb)
︸ ︷︷ ︸

L+
Ai

(70)

d⋃

i=1

|x̂k+i|k| ≥ L+
Ai

(71)

For the remaining asymptote corresponding to|x̂k|k|, we
provide the same two alternatives again for either the closed-
form or root-finding approximations based upon the derivation
provided below.

lim
X̂\|x̂k|k|→∞

d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L|D) =

P (|xk| < L|x0, . . . , xk)

m
P (|xk| < L|x0, . . . , xk) ≥ Pb

This follows from the same logic that leads up to Eqn.
35 for the previously addressed thermal sensation complaint

application. As such, we may use Eqns. 55-57 to define the
closed-form or root-finding approximations and the asymptote
for |x̂k|k|, previously used for the derivation of Eqn. 57 in the
beginning of this section. For the closed form approximation,
it is given by the same inequality, shown again in Eqn. 72.

|x̂k|k| ≤ L−
√

Vk|kΦ−1(Pb) = L−A (72)

Furthermore, the root-finding approximation can again be
found by solving for the zeros off(x̂k|k) shown below, just
as in Eqn. 58 provided previously. Given a particular value of
Pb, the asymptote for the alarm region corresponding tox̂k|k
is defined byL−A, where|x̂k|k| ≤ L−A for f(x̂k|k) ≥ 0.

f(x̂k|k) = Φ

(
L− x̂k|k√

Vk|k

)
− Φ

(
−L− x̂k|k√

Vk|k

)
− Pb

The combined alarm region is the intersection of Eqns. 71
and 72, yielding Eqn. 73.

Aapprox =
d⋃

i=1

[|x̂k+i|k| ≥ L+
Ai

] ⋂ [|x̂k|k| ≤ L−A
]

(73)

This alarm region is the last of the optimal regions to be
discussed. However, there may be many more that can be
defined from within the class of level-crossing events having
a fixed threshold, using the same techniques. This particular
event, in which at least one up/downcrossing occurs within an
interval, may also span many dimensions as in the previous
example. We show a sample three dimensional alarm region in
Fig. 8, for illustrative purposes. The approximations provided
for this alarm region can be used to form a rectangularized
bound, again outside of which integrations to compute relevant
alarm statistics may be performed. In two dimensions, this
event is identical to the first one covered in this section, an
up/downcrossing event spanning an interval. The correspond-
ing relevant approximations are shown in Figs. 3 and 4.

Fig. 8. Multiple up/downcrossing alarm region in 3 dimensions
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V. EXAMPLES

For both of the examples to be used as a demonstration
testbed for the theory presented in the previous section, we
use variants of data-driven methods to arrive at statistically
viable models. It is possible and in some cases preferable to
use a model that incorporates physics and is based upon first
principles. In these situations, model fidelity is of paramount
importance, so that simulation of the model results in a
realization that both quantitatively and qualitatively resembles
real system behavior. These models are often of use when
implementing algorithms that automatically take corrective
action, or respond appropriately to caution and warning alarm
signals. In some cases, philosophical or political drivers man-
date the use of such models, when intuitive and physical
explanations are required for the implementation of alarm
systems.

However, developing such models often requires extensive
labor and expert domain knowledge. Invoking the data-driven
approach ameliorates this requirement. Furthermore, data-
driven models are sufficient for our purposes here because
statistical characterization is a reasonable first step in applica-
tion of alarm systems based upon control system error. More
extensive models may be required when developing automated
response strategies as in [3]. As such, we present models based
upon the data-driven approach at different stages for both
the spacecraft propulsion anomaly detection and the thermal
sensation complaint example.

A. Spacecraft Propulsion System Anomaly Detection Applica-
tion

The model used for the spacecraft propulsion system anom-
aly detection application will be briefly reviewed here. More
extensive details can be found in [9]. This model is based
upon control system error, with a fixed critical threshold as
the primary indicator of criticality. The data used for training
of the model is also discussed in detail in [9]. For the
example presented here, the model is based upon the reduced
dataset discussed in [9] that eliminates certain tests based
upon functional categorization. There are several motivations
behind training a linear dynamic system using control system
error for the spacecraft propulsion system anomaly detection
application. One relates to the fact that the data requirements
are quite modest. The training data is univariate, i.e.,n = 1,
and represents the difference between the commanded throttle
and actual throttle. In control systems terminology, this is the
control system error,e(t), traditionally used as the input to
a controller, as shown in Fig. 9. At the same time, we can
provide for a richer description of the dynamics of the data.

We also appeal to the use of control system error against
limit checks or redlines in the design of various alarm systems.
Disturbances that influence a control system during nominal
operation may cause a threshold to be exceeded. However,
other non-environmental disturbances may represent subtleties
in the dynamics of the system being controlled. These anom-
alous excursions may potentially stem from latent faults in
the controlled system that are precursors to incipient failures,
and may eventually manifest themselves in a more serious

Fig. 9. Closed-Loop Control System Block Diagram

fashion. As such, the control system error provides an excellent
parameter for monitoring in the face of latent faults that may
present themselves in a more nuanced manner. This measure
may serve as a more advanced technique to complement
algorithms that use direct sensor measurement which have
more physically intuitive interpretations when applying the
limit check paradigm.

There are two primary control systems that operate in
support of the Space Shuttle Main Engine (SSME), the
spacecraft propulsion system which is the driver for all of
the models developed in this section. One is the throttle
control system, which regulates the main combustion chamber
pressure. The other major control system that functionally
supports the SSME is the mixture ratio control system. This
system maintains the oxidizer/fuel mixture ratio at a desired
level. We use the throttle control system error due to the
commanded throttle qualitatively being the apparent driver for
so many other sensor readings.

In Fig. 9, the closed-loop control system representation
illustrates that the actual throttle level,x(t), is subtracted from
the desired or commanded throttle level,r(t), to obtain the
control system error,e(t) = r(t) − x(t). The block labeled
C represents the controller, which we can nominally assume
to be a very simple PI (proportional-integral) controller. The
PI controller takes the control system error and computes the
appropriate actuation to deliver to the plant, labeled as block
P. The plant may be subject to input noise,w(t), which is
introduced directly into the state dynamics. Finally, as the
feedback loop is closed, measurement noise,v(t), may be
additively introduced to the output of the plant to formx(t),
used by the control system.

There are several transfer functions that can be formed from
the closed-loop state dynamics. The one that we are most
interested in from the machine learning standpoint isTFw→e,
or the closed loop dynamics that represent the transfer function
from input noise to error. Because the data available to us
for training is the control system error,e(t) = r(t) − x(t),
we can reformulate the dynamics of the closed-loop feedback
control system into a standard representation that can be
treated as an unsupervised problem in machine learning (i.e.,
using output observations only). This is performed by loosely
approximating the measured control system error using the
transfer function,TFw→e. Further discussion of the nuances
of this point are provided in [9]. However, everything within
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the dotted line can be reformulated to represent the closed
loop dynamics, where the desired output ise(t). Ultimately,
we would like to be able to express these dynamics as shown
in Eqns. 74-75 below. In Eqns. 74-75,x(t) is used as a generic
placeholder for the transfer function output,e(t), rather than
for x(t) shown in Fig. 9. This allows for us to match the
notation used in Section IV.

q̇(t) = Acq(t) + Bww(t) (74)

x(t) = Ccq(t) + v(t) (75)

again, where

w(t) ∼ N (0, Qc)
v(t) ∼ N (0, Rc)

All matrices in the equation above are also subscripted with
“c” or “ w” in order to disambiguate between the continuous-
time dynamics and the discretized dynamics yet to be pre-
sented, which mimic those used in Section IV. Eqns. 74-75
need to be discretized in order to fit the digital implementation
of the algorithm. However, prior to discretization we can
generate statistics from available data that map to parameters
in controllable canonical form. The controllable canonical
form shown in Eqns. 76-78 includes two intuitive canonical
parameters: the natural frequency,ωn, and the damping ratio,
ζ. We can estimate the natural frequency by making an
assumption ofx(t) to be represented by a zero-mean stationary
Gaussian random process. In this case, we can use Rice’s
formula for the level-upcrossing rate [22], [23], as shown in
Eqn. 79, to compute the natural frequency,ωn = σẋ

σx
. This

formula can be derived very easily [24], and is used in similar
studies [15], [25], [3].

Ac =
[

0 1
−ω2

n −2ζωn

]
(76)

Bw =
[

0
ω2

n

]
(77)

Cc =
[

1 0
]

(78)

ν+
x =

σẋ

2πσx
e−

1
2 (L−µx

σx
)2

(79)

By using L = 0 as a candidate level, we may count the
number of zero-upcrossings of the sample data, and compute
the 2nd-order statistics,µx, and σx, in order to use Rice’s
formula to findωn. In caseµx = L = 0, we simply needν+

x ,
becauseωn = σẋ

σx
= 2πν+

x .
After discretization, Eqns. 74-75 fit the modeling paradigm

represented by our machine learning problem represented in
Fig. 10. The modeling paradigm in this figure is expressed
within the probabilistic graphical model framework. Here we
can see that the model to be learned is a dynamic system.
The observed data are represented by shaded nodes and the
unobserved state represented by hidden unshaded nodes. Both
are continuous (Gaussian) random variables, the latter of
which need to be inferred.

During the learning procedure for the linear dynamic sys-
tem, the EM algorithm is used to find the parameters shown

in Fig. 10. Details of this procedure are provided in Zoubin
and Hinton [26] as well as Digalakis et al. [27], and it is
implemented using Murphy’s BNT (Bayes’ Net Toolbox) [28].
Initialization of the parameters shown asθ in Fig. 10 is also
performed using some basic heuristics. By initializingζ = 1
and clampingωn during training, we can back out the learned
value of the damping ratioζ. Initial values forAc and Bw

can be derived as a function ofζ andωn, Cc =
[

1 0
]

is
fixed during learning, andR is initialized by making a guess
at the SNR (signal to noise ratio), so thatR = σ2

x

SNR (σ2
x can

be computed directly from the data).
Using these assumptions, and by use of steady-state

continuous-time Lyapunov equations for Eqns. 74 and 75 (cf.
PL

ss from Fig. 10), we can find an adequate initialization
for Qc, as is performed in [24], [3]. We then discretize
all parameters using the sampling intervalTs = 0.04 sec
(obtained from the data in [9]) , and the procedure outlined
in [3], allowing us to form Eqns. 80 - 81, which support the
variables shown in Fig. 10. Furthermore, they also support all
of the theory presented in Sec. IV, beginning with Eqn. 1,
which are identical to Eqns. 80 - 81.

qk+1 = Aqk + wk (80)

xk = Cqk + vk (81)

where

wk ∼ N (0,Q)
vk ∼ N (0, R)
A = eAcTs

B = (eAcTs − I)A−1
c Bw

C = Cc

R =
Rc

Ts

Q =
∫ Ts

0

eAcλBwQcBT
weAT

c λdλ

Throughout learning, we attempt to retain the controllable
canonical structure in order to allow for determination of the
learned value forζ. Furthermore, it allows for an intuitive
interpretation of the model’s parameters and resulting realiza-
tions. This is easily performed by the allowance for enforce-
ment of arbitrary constraints in Murphy’s BNT [28], and slight
modification of the appropriate open-source routines. Doing so
introduces sub-optimality into the learning procedure, which
means that the learning curve will not necessarily increase
monotonically. However, a reasonable sub-optimal local min-
imum will be found that best represents the parameter space
with enforcement of the controllable canonical form constraint.

In the results section we will perform a comparative analysis
of the alarm systems discussed thus far: redline, predictive, and
optimal, for each of the level-crossing events introduced in
Sec. IV. The manner in which the analysis will be performed
is via the ROC curve. For each level-crossing event, four
different prediction windows will be investigated:d = 1 (0.04
sec),d = 2 (0.08 sec),d = 5 (0.2 sec), andd = 10 (0.4 sec),
to allow for the study of a variety of cases for potential early
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Fig. 10. Linear Dynamic System

detection. It is important to note that for certain level-crossing
events, the computational burden of the alarm system design
increases with the number of steps in the prediction window.

The data-driven model derived in this section represents a
more advanced statistical method than will be presented for
the thermal sensation complaint application in the next section.
We’ve demonstrated here that a training procedure involves
learning via use of the EM algorithm, etc. Typically, machine
learning/data mining methods require a formal experiment
to be conducted such that a data set is partitioned into
mutually exclusive training and validation hold out subsets.
The validation hold out set serves to test the model on data
unseen by the model which is derived from empirically-based
training data. Some examples of data-driven models that apply
this more formal procedure are as follows: [29], [30], [31], [9].

The latter reference uses the same model derived here,
where a more formal experimental treatment is provided. We
don’t use the same formal procedure in this article, because
the main point is to introduce an alternative alarm design
technique and to compare it to others based upon its theoretical
rather than its experimental merits. One of the theoretical
merits lies in the fact that we can design an alarm system
based upon the model parameters derived from the training
data without having to form a ROC curve empirically based
upon examples of failures.

B. Thermal Sensation Complaint Application

The second example is based upon a similar state-space
model which can be used for complaint prediction in thermal
comfort applications. Recall that this model involves a random
threshold, and the dynamics are quite different than in the
previous example. Here, the hot complaint level is arbitrarily
chosen as the example of interest to prevent redundancy. It
is assumed that distinct hot and cold optimal alarm systems
for the two processes can be designed independently. The
state-space systems for the hot critical level as well as the
building temperature process of interest can easily be para-
meterized. The subscripts of the system matrices for both hot
complaint and building levels are “h” and “b”, respectively,
to disambiguate between the continuous time and discretized
representations yet to be presented. We first define the state-
space equation for the hot complaint level in continuous time:

ż(t) = Ahz(t) + Bhn(t) (82)

y(t) = Chz(t)

The building temperature process is also defined first in
continuous time, and both have the same canonical parame-
trization as in the previous example shown in Eqns. 76-78.

q̇(t) = Abq(t) + Bbr(t) + Bww(t) (83)

x(t) = Cbq(t) + v(t)

All of these systems must be discretized for the discrete time
analysis in Sec. IV to apply. This is done by performing a zero-
order hold on all of the above systems as shown in [24]. As
such, a sampling interval,Ts, must also be chosen. As a rule
of thumb, we choose a discrete time sampling interval based
upon a fraction of the shortest time constant of the dynamics
of all relevant processes. More details of the selection of the
sampling interval are available in [3]. However, the value ofTs

is 20 min, which certainly provides evidence that the dynamics
here are quite different than in the previous example. Again,
apriori statistics for the zero-mean input and measurement
noise processes,w(t), v(t) and n(t) need to be quantified.
All are scalar processes, such thatw(t), v(t), n(t) ∈ R. Using
Gaussian assumptions, we have the following:

w(t) ∼ N (0, Qw)
v(t) ∼ N (0, R)
n(t) ∼ N (µTh

, Qn)

Note thatr(t) ∈ R is a scalar fixed control input, which in
our application acts as the thermostat setpoint. Note also that
R is only applicable to the building temperature process, as
it is the measured process, andn(t) is only applicable to the
complaint process, where there is no defined “control input.”
Since we assume that modeling the complaint levels requires
no direct control input term, the mean of the input noise
driving these processes is taken as the mean of the output.
Also, no measurement noise needs to be modeled for the
complaint levels because there are no measurements of these
unobserved processes. For the building process, typically the
output measurements ofx(t) come from a DDC (Direct Digital
Control) system associated with more sophisticated commer-
cial building systems. Otherwise, these types of measurements
often come from micro-dataloggers that record the temperature
for a preset period of time.

Table I provides the relevant parameters and respective
values for all three processes in continuous time. With the
exception of the last two columns, these parameters come
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TABLE I

TABLE OF BUILDING AND COMPLAINT TEMPERATURESTATISTICS

µT σT σṪ ω ζ

Hot 91oF 5.06oF 1.14
oF
hr 0.6645 rad

hr
1

Cold 50.43oF 6.14oF 4.08
oF
hr 0.2253 rad

hr
1

Bldg 74oF 3.57oF 0.91
oF
hr 0.2682 rad

hr
1

from Federspiel’s work [25]. The fourth column’s (ω) values
were derived from the first three using documented methods
[15], [25], [24]. The fifth column’s (ζ) values were selected
heuristically for simulation/analysis ease [24], [32].

The measurement noise can be computed by a procedure
discussed in [3], where relevant assumptions are also discussed
in detail. The primary reason for computing the measurement
noise is for use in Kalman filtering and prediction, which
is an implementation prerequisite of the type of optimal
alarm system introduced in Sec. IV. The formulae relating
the remaining discretized, discrete-time parameters to their
continuous-time counterparts are shown in Eqns. 84-87. The
state-space parameters are discretized by performing a zero-
order hold of the two processes. The input noise discretization
results are also provided for the building temperature process,
using a documented procedure [33], [34], [35], [36]. The
input noise variance for the hot complaint level process was
not discretized, but found by using discrete-time Lyapunov
analysis of the discretized state-space system. A documented
method [24] shows details on how to derive the discrete-time
input noise based on a continuous and discrete time Lyapunov
analysis of the statistics for these processes.

Discretization of state-space equations for both processes:

zk+1 = Ahdzk + Bhdnk (84)

yk = Chdzk (85)

qk+1 = Aqk + Brk + wk (86)

xk = Cqk + vk (87)

where

Ahd = eAhTs

Bhd = (eAhTs − I)A−1
h Bh

Chd = Ch

A = eAbTs

B = (eAbTs − I)A−1
b Bb

C = Cb

and

nk ∼ N (µT , Qnd
)

Qnd
= E[nknT

k ]

=
σ2

TB

CdP̃L
ssCT

d

whereP̃L
ss

4
=

PL
ss

Qnd

= AdP̃L
ssA

T
d + Bwd

BT
wd

also:

wk ∼ N (0,Q)

Q =
∫ Ts

0

eAλBwQwBT
weAT λdλ

whereQw =
σ2

TB

CP̃cCT

and P̃c
4
=

Pc

Qw

AP̃c + P̃cAT = BwBT
w

and:

vk ∼ N (0, R)
R = E[vkvT

k ]

Equations 84-87 relate back to Eqn. 1 in support of theory
presented in Sec. IV. This is not as apparent as in the
previous example, where there was a more straightforward
application of the theory developed. In this case, the level-
crossing problem can be reformulated because two processes
interact, the stochastic critical level associated with hot com-
plaints, and the building temperature process. In this case the
Kalman filtering and prediction would only be performed on
the building temperature process. Reformulation of the level-
crossing problem entails transformation of the problem into
one that fits the paradigm of a fixed, static threshold. In doing
so we simply take the difference between the stochastic critical
level, yk, and the controlled process,xk, implying that the
critical level is given byL = 0, due to upcrossings ofL = 0
by xk − yk.

Furthermore, the conditional expectations necessary for
arriving at the Kalman filtering and prediction formulae require
a slight recasting. This will not result in a large deviation from
the alarm theory previously presented, but theBrk term in
Eqn. 86 needs to be accounted for and propagated through
all of the equations in Sec. IV. In addition, the level-crossing
problem can be reformulated even further due to the fact that
the conditional expectation of the stochastic critical level,yk,
conditioned on the observations is given as shown in Eqns.
88-90. This is due to the assumption that building temper-
atures are uncorrelated with, or independent of the hot and
cold complaint levels. This independence assumption made in
Federspiel’s study [14], is valid if the coping behaviors of
building occupants do not vary with building temperature. As
such, the reformulation of the problem from the alarm theory
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standpoint as presented in Sec. IV is for the process,xk, to
interact via upcrossing with the levelL = µTh

.

ŷk+d|k
4
= E[yk+d|x0, . . . , xk] (88)

= ŷk+i|k, ∀i ≥ 0 (89)

= µTh
(90)

Again, our problem is to design an optimal alarm system
that predicts at least one operating complaint, or at least
one arrival and operating complaint. For the former case, we
use a12-step ahead prediction window, orm = 12. This
corresponds to a4-hour period in which operating complaints
can occur either during the morning or afternoon period of the
day. For the latter case, we use the samem = 12 step ahead
prediction window, andd = 3 as the number of steps prior to
the start of the day. In this1-hour period prior to the beginning
of the day, we want to predict both arrival complaints and
operating complaints in the ensuing4-hour period.

All results and subsequent discussion for the application of
the theory presented in Sec. IV to this example are provided
in thorough detail in [3], in lieu of presentation in this article.
In [3], a comparative analysis of the differing approximations
used for the level crossing events defined above is provided.
Furthermore, an error analysis for these approximations as
well as comments on accuracy and computational design
time are provided. Unlike the previous application, the alarm
system metrics used are Type I/II error probabilities (false
alarm/missed detection probabilities, respectively) in lieu of
the ROC curve.

The extent of the data-driven method as applied to this
example lies in generation of a model derived from statistics.
It is still possible to characterize the building temperature
process through the same control loop as shown in Fig. 9
as for the previous example, although there is a different
transfer function of interest,TFr→x. However, the parameters
shown in Fig. 10 are not learned via the EM algorithm for this
example. Rather, the model derived purely from statistics that
would typically serve as the starting point for such an algo-
rithm is used. However, if we apply the canonical constraints
as for the previous example, the resulting distribution based
on the learned parameters may not change significantly from
the initial parameters. As such, using the model derived from
statistics is a feasible alternative for this application.

VI. RESULTS

All of the results presented in this section are only for the
spacecraft propulsion anomaly detection example. As stated
previously, detailed discussion of the results for the thermal
sensation complaint example can be found in [3]. Chapter 3 of
[3] details the fidelity of various approximations to the exact
optimal alarm region, and Chapter 7 covers the implementation
of the resulting alarm systems. In general it was found that
improved approximations to the exact alarm region were
possible at the expense of an increased computational burden.

There are no comparisons to other types of alarm systems in
[3] as will be presented here. As such, we present the results
for all alarm system types and each of the level-crossing events

covered in Sec. IV. ROC curves provide the basis for Figs.
11-15 presented in this section. The formulae for true and
false positive rates required to form the ROC curves were
presented in Sec. IV as Eqns. 47-48. We know that as long
as the following three probability computations are performed:
P (Cexact), P (Aapprox), andP (Cexact, Aapprox), any relevant
alarm system metric can be derived from them, including the
true and false positive rates required to form the ROC curves.

The formulae for each of these probabilities were provided
in detail for all alarm system types and level-crossing events
of interest, both in Sec. IV and in the appendices. As such,
computing integrals of the form necessary for design and com-
parison of the alarm systems require multivariate probability
computations. These computations are performed by using
Genz’s algorithm [17], based upon a Monte Carlo-style in-
tegration. Due to the Monte Carlo nature of the computations,
a fixed number of random samples must be set. For the results
presented below, the fixed number of random samples for each
integration performed was set to3600 sample points.

There is an important property of the ROC curve to consider
when evaluating the results presented in the section from an
absolute standpoint. The diagonal line corresponding to equiv-
alent true and false positives values represents the boundary
above which a system performs better than randomly guessing
if the level-crossing event occurs. From a relative standpoint,
this property is less important because the objective is to
perform a qualitative comparison among different types of
alarm systems.

Many of the results shown in Figs. 11-15 actually lie very
close to, if not along the random guessing line. This mainly
has to do with an increase in the prediction window size, or
for prediction of an event that lies at the end of a prediction
window. Naturally, there is more difficultly with accurately
predicting events that are defined with large prediction win-
dows or that that lie further out into the future. There is
even potentially the possibility of insufficient resolution to
capture the full curvature of the ROC curve in some cases.
Furthermore, the ROC curve is only as good as the given
model parameters, since the ROC statistics are a function of
these model parameters, which are implicitly a function of the
data. Therefore, a different training data set may have resulted
in a ROC curve that has a different shape that would be more
robust to increases in the size of the prediction window.

For the curves presented in Figs. 11-15 below, the re-
sults of the optimal ROC curve true and false positive rates
were obtained via approximation. As presented in Sec. IV,
the optimal alarm system alarm regions had two different
approximations available: the “closed-form” and the “root-
finding” approximations. Both approximations yielded very
similar and in some cases nearly indistinguishable results for
all of the cases presented below. However, as evidenced in
Figs. 3 - 6, the ranges ofPb over which the alarm regions
were feasible differed by a modest amount. As such, where
one approximation yields an infeasible solution, the other
approximation is used in its stead. This is performed for all
true and false positive rate computations for the optimal alarm
system results displayed in Figs. 11-15 below.
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Predicted Event: Spanning up/downcrossing
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Fig. 11. ROC curve for up/downcrossing event spanning an interval

A. Up/downcrossing event spanning an interval

By observing the ROC curves in Fig. 11, we can imme-
diately discern that for the two smallest prediction windows
(d = 1, d = 2), both the optimal and the predictive alarm
systems perform better than the redline alarm system, and
their performance is qualitatively identical. As the prediction
window increases, all alarm systems appear to have identical
performance, which lie along the random guessing line.

B. End of interval up/downcrossing event

By observing the ROC curves in Fig. 12, we can tell that the
redline alarm system clearly outperforms the predictive and the
optimal alarm systems for all prediction windows. The optimal
alarm system outperforms the predictive alarm system only
marginally. From an absolute standpoint, however, this is an
unimportant distinction due to the fact that both systems yield
performance that lies along the random guessing line. This
can mainly be attributed to the fact that the up/downcrossing
event occurs at the end of the prediction window interval.
Because the crossing event occurs at the end of the interval, the
alarm systems that introduce predicted future process values
are already at a fundamental disadvantages in comparison to
the redline method.

C. End of interval exceedance/fade event

In Fig. 13 we can qualitatively observe that the optimal
alarm system outperforms both the predictive and redline
alarm systems for all prediction windows. However, this is

Predicted Event: End of interval up/downcrossing
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Fig. 12. ROC curve for end of interval up/downcrossing event

Predicted Event: End of interval exceedance
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Fig. 13. ROC curve for end of interval exceedance/fade event
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only marginally the case when comparing the optimal and
the redline alarm systems as the prediction window increases.
Curiously, the predictive alarm system performs worse than
the decision rule dictated by the random guessing line. This
indicates that the information in the model and parameters are
being used incorrectly [16]. Using the optimal alarm system
method therefore drastically improves the predictive capability
for this particular event.
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                                         Predicted Event:                                               
At least one exceedance/fade within specified prediction window
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Fig. 14. ROC curve for at least one exceedance/fade event within an interval

D. At least one exceedance/fade event within an interval

Fig. 14 illustrates that the qualitative nature of the optimal
alarm system performance is again always better than the
predictive alarm system for all prediction windows. However,
in this case its performance in general is never quite as good
as the redline alarm systems. For smaller prediction windows,
the optimal alarm system does marginally outperform the
redline alarm system for a small range of values of the design
parameter,Pb. This is also true of the predictive alarm system
for the smallest prediction window.

E. At least one up/downcrossing event within an interval

Finally, in Fig. 15 we can observe that again the optimal
alarm system performance is again always better than the
predictive alarm system for all prediction windows. For the
smallest prediction windows, the predictive alarm system
outperforms the redline alarm system, otherwise it is always
a poorer performer. As such, this is again indicative of the
fact that using the optimal alarm system method improves the

                                           Predicted Event:                                               
At least one up/downcrossing within specified prediction window
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Fig. 15. ROC curve for at least one up/downcrossing event within an interval

predictive capability not only for this particular event, but for
all events.

VII. D ISCUSSION, CONCLUSIONS, & FUTURE RESEARCH

It is not easy to draw a general conclusion from the results
presented in the previous section. Comparatively, in consid-
eration of all alarm systems, determining the best performer
depends on the type of level-crossing event, and which alarm
systems introduces prediction of future process values. How-
ever in case of the latter category, the optimal alarm system is
clearly the best performer, even in light of the approximations
used. Redline alarm systems do not have predictive capability
in the sense that no predicted future values are used, although
they may practically provide predictive capability in the sense
that an alarm may sound prior to a critical event. Optimal and
predictive alarm systems have predictive capability in both
senses. In fact, these alarm systems can be thought to provide
earlier detection of potential faults than provided by redlines.
This therefore introduces some bias into the comparative
analysis. Furthermore, the use of Kalman filtering allows for
estimation and prediction of states that would otherwise be
unobserved or immeasurable using the redline alarm system.

For the spacecraft propulsion anomaly detection example,
two distinct levels were used for redline analysis: one for
limit checking, and one for alarm design. This technique was
used in lieu of a single level having both functions for the
redline analysis because the ROC statistics can be expressed
as a function of the model parameters when using two levels.
This is not always possible for analysis in the case of a
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single level, specifically in regards to the technique used to
generate the ROC curve statistics. Furthermore, two levels
are often used in practice for the design of fault detection
algorithms that involve limit-based abort decisions. A “yellow-
line” limit check is often used as a precursor caution and
warning threshold to the “redline” abort threshold. The former
can be used as an alarm system design parameter, where
the latter may serve as a hard limit determined apriori via
extensive experimental validation.

When there are insufficient examples of failures, the ROC
curve statistics (the true and false positive rates) can be
estimated empirically as limiting fractions, using only a single
redline level. This is akin to the “counting” method discussed
in the introduction, and as such it might also be possible
to simulate failures with the model in lieu of using actual
observations of failures. As such, this method could have been
used to demonstrate a comparative analysis of a redline alarm
system, based upon a single level. This “Monte-Carlo” style
technique is computationally intensive, and is still based upon
the model-generated failures as opposed to actual observations
of failures. A similar empirical approach detailed in [20] can
be used to form the ROC curve.

Alternatively, we could have used the model parameters
using the χ2 distribution as presented in Sec. IV for the
analysis involving a single level. However, this technique will
generate ROC curve statistics that belong to two complemen-
tary hypotheses. This paradigm differs from the one used to
generate ROC curve statistics presented throughout this paper.
We based our alarm statistics upon distinct definitions of a
critical event as the hypothesis, and an independently designed
alarm system. As such, ROC analysis cannot be performed
using our paradigm in the case of a single redline level.
However, in the other paradigm, alarm systems merge the
functionality of limit checking and the use of an alarm design
parameter into a test of two complementary hypotheses.

Using this method, it is not possible to decouple indepen-
dent alarm design from the critical event, which provides a
measure of functional distinction. This method is also the one
most commonly found in the literature, i.e., [20], [10], [11].
Arguably, the critical event should be based upon the physics
of the failure, and the alarm design parameter should be used
to predict it. The distinction between these two paradigms
is one of the most discernable differences in the theoretical
techniques used here and in other literature, [1], [2], [3], [4],
[5], [6].

Subject to certain constraints, design of the alarm system
can proceed without the need to observe actual examples of
failures, and there is no need to estimate the alarm system
metrics empirically using either paradigm. This obviates the
need to rely upon having actual available examples of failures
for alarm system design to generate the ROC curve. That is
because they are based on the model and design parameters.
However, the hypothesis-based level-crossing event must suf-
ficiently characterize an actual physical failure for the model-
based analysis to be of great benefit.

All of the alarm theory presented in this paper has also been
supported by the thermal sensation complaint application. The
resulting details are presented in [3]. We present both examples

as means to motivate the use of such algorithmic novelty for
other potential applications that require health management or
fault detection. The basis of the theory itself is quite pedantic,
and can naturally be extended to more realistic scenarios that
include non-linear dynamic systems, non-Gaussian distribu-
tions, and potentially the use of extended/unscented Kalman
filtering, and/or particle filtering. In addition, adaptive model
updates may be considered, as is in work presented by Antunes
et al. [8].

Nothing yet has been mentioned about the actual alarm
design procedure or results from its implementation, which
can be performed by selecting the optimal border probability,
Pb. This border probability serves as a free parameter, and
hence as the primary design metric. The steps required for
design of an alarm system have been covered in previous
work [1], [2]. However, they tend to be based either on purely
heuristic trial-and-error approaches, or cost functions. For cost
functions, sometimes it is easy to assign particular costs to
events that penalize the probability of alarms, false alarms, and
missed detections, etc. Assigning these costs requires heuristic
knowledge of the risk-reward tradeoff in terms of relevant
alarm system metrics. This is cause for further study, in which
these challenging design and implementation issues will be
covered in earnest. In future work we can look at creative
ways to select the value ofPb for the optimal alarm system
given the appropriate criteria and investigating different cost
functions.

An issue which has not been addressed in detail for the
spacecraft propulsion anomaly detection application is the
quantification of the approximations used. In [3], the error
introduced in such approximations was discussed in detail for
the thermal sensation complaint application. We would like to
be able to determine: (1) the level of sub-optimality introduced
by making these approximations for the spacecraft propulsion
anomaly detection application, and (2) if they can be improved.
It is known that better approximations to the two-dimensional
alarm regions are possible, documented in Chap. 4 of [3].
Extensions to these same sorts of approximations to alarm
regions that “shrink wrap” the exact alarm region under certain
conditions are cause for further investigation for alarm regions
in multiple dimensions.

The basic engineering approximations introduced in this
article addressed the main objective of demonstrating the
ability to initiate an alarm with as large a prediction window
as possible in advance of critical events. Our presentation here
acts as a necessary precursor to the computationally efficient
design and implementation of optimal alarm systems, as well
as improvements to these approximations to be presented in
sequel articles. Furthermore, the theoretical novelty of this
paper has been demonstrated, in an aim to participate in the
Kalman filter-based fault detection literature discussion from a
different theoretical angle. In doing so, we hope to have more
precisely closed the gap between the use of Kalman prediction
techniques and optimal alarm systems.
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APPENDIX I
REDLINE ALARM SYSTEM COMPUTATIONS FOR

P (Cexact, Aapprox)

A. Up/downcrossing event spanning an interval

The probability,P (Cexact, Aapprox), for this event is shown
in Eqn. I.1.

P (Cexact, Aapprox) =





0 LA > L
P (LA < xk < L, |xk+d| > L) + . . .

LA < L
P (−L < xk < −LA, |xk+d| > L)

=





0 LA > L∫∞
L

∫ L

LA
N (x; µx,Σx) dx + . . .

LA < L
∫ −L

−∞
∫ L

LA
N (x;µx, Σx) dx + . . .∫∞

L

∫ −LA

−L
N (x; µx,Σx) dx + . . .∫ −L

−∞
∫ −LA

−L
N (x; µx,Σx) dx

(I.1)

x =
[

xk

xk+d

]
∈ R2

B. End of interval up/downcrossing event

The probability,P (Cexact, Aapprox), for this event is shown
in Eqn. I.2.

P (Cexact, Aapprox) =

= P (|xk| > LA, |xk+d| < L, |xk+d+1| > L)

=
∫ ∞

L

∫ L

−L

∫ ∞

LA

N (x; µx,Σx) dx + . . .

∫ −L

−∞

∫ L

−L

∫ ∞

LA

N (x;µx, Σx) dx + . . .

∫ ∞

L

∫ L

−L

∫ −L

−∞
N (x;µx, Σx) dx + . . .

∫ −L

−∞

∫ L

−L

∫ −L

−∞
N (x;µx, Σx) dx (I.2)

x =




xk

xk+d

xk+d+1


 ∈ R3

C. End of interval exceedance/fade event

The probability,P (Cexact, Aapprox), for this event is shown
in Eqn. I.3.

P (Cexact, Aapprox) =

{
P (|xk| > max(L,LA)) d = 0

P (|xk| > LA, |xk+d| > L) d > 0 (I.3)

whereP (|xk| > max(L,LA)) = 2Φ
(
− max(L,LA)√

CPL
ssC

T +R

)

andP (|xk| > LA, |xk+d| > L) =
∫ ∞

L

∫ L

LA

N (x; µx, Σx) dx + . . .

∫ −L

−∞

∫ L

LA

N (x; µx,Σx) dx + . . .

∫ ∞

L

∫ −LA

−L

N (x; µx, Σx) dx + . . .

∫ −L

−∞

∫ −LA

−L

N (x; µx, Σx) dx

x =
[

xk

xk+d

]
∈ R2

D. At least one exceedance/fade event within an interval

The probability,P (Cexact, Aapprox), for this event is shown
in Eqn. I.4.

P (Cexact, Aapprox) =




P (|xk| > max(L,LA)) + . . .
LA < L∑d

j=1 P+
aj

+ P−aj

P (|xk| > max(L,LA)) LA > L

(I.4)

where

P+
aj

= P (LA < xk < L,

j−1⋂

i=1

|xk+i| < L, |xk+j | > L)

=
∫ ∞

L

∫ L

−L

. . .

∫ L

−L

∫ L

LA

N (xj ; µxj , Σxj ) dxj + . . .

∫ −L

−∞

∫ L

−L

. . .

∫ L

−L

∫ L

LA︸ ︷︷ ︸
j+1

N (xj ; µxj ,Σxj ) dxj

P−aj
= P (−L < xk < −LA,

j−1⋂

i=1

|xk+i| < L, |xk+j | > L)

=
∫ ∞

L

∫ L

−L

. . .

∫ L

−L

∫ −LA

−L

N (xj ; µxj , Σxj ) dxj + . . .

∫ −L

−∞

∫ L

−L

. . .

∫ L

−L

∫ −LA

−L︸ ︷︷ ︸
j+1

N (xj ; µxj , Σxj ) dxj

xj =




xk

...
xk+j


 ∈ Rj+1

E. At least one up/downcrossing event within an interval

Finally, the probability,P (Cexact, Aapprox), for this event
is shown in Eqn. I.5, with identical definitions ofP+

aj
,P−aj

, and
xj as in the previous case.

P (Cexact, Aapprox) =
{ ∑d

j=1 P+
aj

+ P−aj
LA < L

0 LA > L
(I.5)
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APPENDIX II
PREDICTIVE ALARM SYSTEM COMPUTATIONS FOR

P (Cexact, Aapprox)
A. Up/downcrossing event spanning an interval

We begin with the probability,P (Cexact, Aapprox), for this
event, shown in Eqn. II.1.

P (Cexact, Aapprox) =

= P (|xk| < L, |xk+d| > L, |x̂k+d|k| > LA)

=
∫ ∞

LA

∫ ∞

L

∫ L

−L

N (x;µx, Σx) dx + . . .

∫ −LA

−∞

∫ ∞

L

∫ L

−L

N (x; µx, Σx) dx + . . .

∫ ∞

LA

∫ −L

−∞

∫ L

−L

N (x;µx, Σx) dx + . . .

∫ −LA

−∞

∫ −L

−∞

∫ L

−L

N (x; µx, Σx) dx (II.1)

x =




xk

xk+d

x̂k+d|k


 , µx =




Cµq

Cµq

Cµq


 ∈ R3

Σxj (i1, i2) =





CPL
ssC

T + R 1 ≤ i1 = i2 ≤ 2
CAd(PL

ss − P̂R
ss)(A

d)T CT i1 = i2 = 3
CPL

ss(A
d)T CT 1 ≤ i1 6= i2 ≤ 2

CAd(PL
ss − P̂R

ss)C
T i1 6= i2 : i1 ∨ i2 = 3

B. End of interval up/downcrossing event

The probability,P (Cexact, Aapprox), for this event is shown
in Eqn. II.2.

P (Cexact, Aapprox) =

= P (|xk+d| < L, |xk+d+1| > L, |x̂k+d+1|k| > LA)

=
∫ ∞

LA

∫ ∞

L

∫ L

−L

N (x; µx, Σx) dx + . . .

∫ −LA

−∞

∫ ∞

L

∫ L

−L

N (x; µx,Σx) dx + . . .

∫ ∞

LA

∫ −L

−∞

∫ L

−L

N (x; µx,Σx) dx + . . .

∫ −LA

−∞

∫ −L

−∞

∫ L

−L

N (x;µx, Σx) dx (II.2)

x =




xk+d

xk+d+1

x̂k+d+1|k


 , µx =




Cµq

Cµq

Cµq


 ∈ R3

Σxj (i1, i2) =





CPL
ssC

T + R 1 ≤ i1 = i2 ≤ 2
CAd+1(PL

ss − P̂R
ss)(A

d+1)T CT i1 = i2 = 3
CXssCT 1 ≤ i1 6= i2 ≤ 2

CAd(PL
ss − P̂R

ss)(A
d+1)T CT i1 6= i2 : i1 ∨ i2 = 3

Xss = AdPL
ss(A

d+1)T + Lss −AdLss(Ad)T

Lss = ALssAT + AQ

C. End of interval exceedance/fade event

The probability,P (Cexact, Aapprox), for this event is shown
in Eqn. II.3.

P (Cexact, Aapprox) =

P (|xk+d| > L, |x̂k+d|k| > LA)∫ ∞

LA

∫ ∞

L

N (x;µx, Σx) dx + . . .

∫ −LA

−∞

∫ ∞

L

N (x; µx, Σx) dx + . . .

∫ ∞

LA

∫ −L

−∞
N (x;µx, Σx) dx + . . .

∫ −LA

−∞

∫ −L

−∞
N (x; µx, Σx) dx (II.3)

x =
[

xk+d

x̂k+d|k

]
∈ R2

Σxj (i1, i2) =
{

CPL
ssC

T + R i1 = i2 = 1
CAd(PL

ss − P̂R
ss)(A

d)T CT o.w.

D. At least one exceedance/fade event within an interval

The probability,P (Cexact, Aapprox), for this event is shown
in Eqn. II.4.

P (Cexact, Aapprox) =

P (|xk| > L, |x̂k+d|k| > LA) +
d∑

j=1

Paj (II.4)

whereP (|xk| > L, |x̂k+d|k| > LA) =

∫ ∞

LA

∫ ∞

L

N (x;µx, Σx) dx + . . .

∫ −LA

−∞

∫ ∞

L

N (x; µx, Σx) dx + . . .

∫ ∞

LA

∫ −L

−∞
N (x;µx, Σx) dx + . . .

∫ −LA

−∞

∫ −L

−∞
N (x; µx, Σx) dx

x =
[

xk

x̂k+d|k

]
∈ R2

Σxj (i1, i2) =





CPL
ssC

T + R i1 = i2 = 1
CAd(PL

ss − P̂R
ss)(Ad)T CT i1 = i2 = 2

C(PL
ss − P̂R

ss)(A
d)T CT i1 6= i2
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and

Paj
= P (

j−1⋂

i=0

|xk+i| < L, |xk+j | > L, x̂k+d|k > LA)

=
∫ ∞

LA

∫ ∞

L

∫ L

−L

. . .

∫ L

−L

N (xj ;µxj
, Σxj

) dxj + . . .

∫ ∞

LA

∫ −L

−∞

∫ L

−L

. . .

∫ L

−L

N (xj ;µxj
, Σxj

) dxj + . . .

∫ −LA

−∞

∫ ∞

L

∫ L

−L

. . .

∫ L

−L

N (xj ; µxj
, Σxj

) dxj + . . .

∫ −LA

−∞

∫ −L

−∞

∫ L

−L

. . .

∫ L

−L︸ ︷︷ ︸
j+2

N (xj ; µxj
, Σxj

) dxj

xj =




xk

...
xk+j

x̂k+d|k


 ∈ R

j+2

Σxj (i1, i2) =





CPL
ssC

T + R 1 ≤ i1 = i2 ≤ j + 1
CXssCT 1 ≤ i1 6= i2 ≤ j + 1

CAd(PL
ss − P̂R

ss)(A
d)T CT i1 = i2 = j + 2

CAd(PL
ss − P̂R

ss)(A
i1∨i2)T CT i1 6= i2 : i1 ∨ i2 = j + 2

Xss = Ai1PL
ss(A

i2)T + Lss −Ai1Lss(Ai1)T

Lss = ALssAT + Ai2−i1Q wherei1 < i2

E. At least one up/downcrossing event within an interval

Finally, for this event,P (Cexact, Aapprox) =
∑d

j=1 Paj ,
with identical definitions ofPaj , xj , andΣxj as in the previous
case.

APPENDIX III
OPTIMAL ALARM SYSTEM COMPUTATIONS FORP (Aapprox)

AND P (Cexact, Aapprox)

A. Up/downcrossing event spanning an interval

The probability of alarm,P (Aapprox), for this event can be
computed as in Eqn. III.1.

P (Aapprox) = P (|x̂k|k| < L−A, |x̂k+d|k| > L+
A) (III.1)

=
∫ L−A

−L−A

∫ ∞

L+
A

N (x;µx, Σx) dx + . . .

∫ L−A

−L−A

∫ −L+
A

−∞
N (x; µx, Σx) dx

x =
[

x̂k|k
x̂k+d|k

]
∈ R2

Σx =
[

C
CAd

]
(PL

ss − P̂R
ss)

[
C

CAd

]T

The probability,P (Cexact, Aapprox), for this event is shown
in Eqn. III.2.

P (Cexact, Aapprox) =

P (|xk| < L, |xk+d| > L, |x̂k|k| < L−A, |x̂k+d|k| > L+
A)

=
∫ L

−L

∫ ∞

L

∫ L−A

−L−A

∫ ∞

L+
A

N (x;µx, Σx) dx + . . .

∫ L

−L

∫ ∞

L

∫ L−A

−L−A

∫ −L+
A

−∞
N (x; µx,Σx) dx + . . .

∫ L

−L

∫ −L

−∞

∫ L−A

−L−A

∫ ∞

L+
A

N (x; µx, Σx) dx + . . .

∫ L

−L

∫ −L

−∞

∫ L−A

−L−A

∫ −L+
A

−∞
N (x; µx,Σx) dx (III.2)

xc
4
=

[
xk

xk+d

]
, µxc

=
[

Cµq

Cµq

]
∈ R2

xa
4
=

[
x̂k|k

x̂k+d|k

]
, µxa =

[
Cµq

Cµq

]
∈ R2

x =
[

xc

xa

]
, µx =

[
µxc

µxa

]
∈ R4

Σxc =
[

CPL
ssC

T + R CPL
ss(A

T )dCT

CAdPL
ssC

T CPL
ssC

T + R

]

Σxa =
[

C
CAd

]
(PL

ss − P̂R
ss)

[
C

CAd

]T

Σx =
[

Σxc Σxa

Σxa Σxa

]

B. End of interval up/downcrossing event

The probability of alarm, P (Aapprox) and
P (Cexact, Aapprox) can be computed as in Eqns. III.3,
and III.4, respectively.

P (Aapprox) = P (|x̂k+d|k| < L−A, |x̂k+d+1|k| > L+
A)

=
∫ L−A

−L−A

∫ ∞

L+
A

N (x; µx, Σx) dx + . . .

∫ L−A

−L−A

∫ −L+
A

−∞
N (x;µx, Σx) dx (III.3)

x =
[

x̂k+d|k
x̂k+d+1|k

]
∈ R2

Σx =
[

CAd

CAd+1

]
(PL

ss − P̂R
ss)

[
CAd

CAd+1

]T

and P (Cexact, Aapprox) = P (|xk+d| < L, |xk+d+1| >
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L, |x̂k+d|k| < L−A, |x̂k+d+1|k| > L+
A)

=
∫ L

−L

∫ ∞

L

∫ L−A

−L−A

∫ ∞

L+
A

N (x;µx, Σx) dx + . . .

∫ L

−L

∫ ∞

L

∫ L−A

−L−A

∫ −L+
A

−∞
N (x; µx,Σx) dx + . . .

∫ L

−L

∫ −L

−∞

∫ L−A

−L−A

∫ ∞

L+
A

N (x; µx, Σx) dx + . . .

∫ L

−L

∫ −L

−∞

∫ L−A

−L−A

∫ −L+
A

−∞
N (x; µx,Σx) dx (III.4)

xc
4
=

[
xk+d

xk+d+1

]
, µxc

=
[

Cµq

Cµq

]
∈ R2

xa
4
=

[
x̂k+d|k

x̂k+d+1|k

]
, µxa =

[
Cµq

Cµq

]
∈ R2

x =
[

xc

xa

]
, µx =

[
µxc

µxa

]
∈ R4

Σxc =

[
CPL

ssC
T + R CAdPL

ss(AT )d+1CT

CAd+1PL
ss

(
CAd

)T

CPL
ssC

T + R

]

Σxa =
[

CAd

CAd+1

]
(PL

ss − P̂R
ss)

[
CAd

CAd+1

]T

Σx =
[

Σxc Σxa

Σxa Σxa

]

C. End of interval exceedance/fade event

The probability of alarm, P (Aapprox) and
P (Cexact, Aapprox) can be computed as in Eqns. III.5,
and III.6, respectively.

P (Aapprox) = P (|x̂k+d|k| ≥ L+
A) (III.5)

= 2Φ


− L+

A√
CAd(PL

ss − P̂R
ss)(Ad)T CT




and
P (Cexact, Aapprox) =

P (|xk+d| > L, |x̂k+d|k| > L+
A)∫ ∞

L+
A

∫ ∞

L

N (x;µx, Σx) dx + . . .

∫ −L+
A

−∞

∫ ∞

L

N (x; µx, Σx) dx + . . .

∫ ∞

L+
A

∫ −L

−∞
N (x;µx, Σx) dx + . . .

∫ −L+
A

−∞

∫ −L

−∞
N (x; µx, Σx) dx (III.6)

x =
[

xk+d

x̂k+d|k

]
∈ R2

Σxj (i1, i2) =
{

CPL
ssC

T + R i1 = i2 = 1
CAd(PL

ss − P̂R
ss)(A

d)T CT o.w.

D. At least one exceedance/fade event within an interval

The probability of alarm, P (Aapprox) and
P (Cexact, Aapprox) can be computed as in Eqns. III.7,
and III.8, respectively.

P (Aapprox) = P (
d⋃

i=0

|x̂k+i|k| ≥ L+
Ai

) (III.7)

= 1− P (
d⋂

i=0

|x̂k+i|k| ≤ L+
Ai

)

= 1−
∫ L+

A0

−L+
A0

. . .

∫ L+
Ad

−L+
Ad︸ ︷︷ ︸

d+1

N (x, µx, Σx)dx

x =




x̂k|k
...

x̂k+d|k


 , µx =




Cµq

...
Cµq


 ∈ Rd+1

Σx =




C
...

CAd


 (PL

ss − P̂R
ss)




C
...

CAd




T

Mathematical curiosities of this type of covariance ma-
trix as related to control theory, specifically the property of
observability, are discussed in greater detail in [3]. Further-
more, it is convenient that the number of terms required
to compute the complicated multi-dimensional level-crossing
events as presented in Eqn. III.7 above can be reformulated
to achieve better scaling properties. This is largely due to the
way in which the aggregate probability computation can be
rewritten using basic axioms of probability. Computing the
same probability for the events related to thermal sensation
complaint application shown in [3] requires the brute force
inclusion/exclusion rule which results in an explosion of terms.
Therefore, reformulation of the probability computation works
advantageously, and this can also be applied to probability
computations for events related to the thermal sensation com-
plaint application. However, using the inclusion/exclusion rule
for these computations may provide a similar accuracy for less
computational burden for reasons discussed in [3].

P (Cexact, Aapprox) = P (Cexact)− . . .

P (|xk| > L,

d⋂

i=0

|x̂k+i|k| ≤ L+
Ai

)− . . .

d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L,

d⋂

i=0

|x̂k+i|k| ≤ L+
A)

(III.8)
where P (Cexact) was previously given in Eqn. 44, and
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P (|xk| > L,
⋂d

i=0 |x̂k+i|k| ≤ L+
Ai

) =

∫ ∞

L

∫ L+
A0

−L+
A0

. . .

∫ L+
Ad

−L+
Ad

N (x, µx, Σx)dx + . . .

∫ −L

−∞

∫ L+
A0

−L+
A0

. . .

∫ L+
Ad

−L+
Ad︸ ︷︷ ︸

d+2

N (x, µx, Σx)dx

x =




xk

x̂k|k
...

x̂k+d|k


 , µx =




Cµq

...
Cµq


 ∈ Rd+2

Σxc
= C(PL

ss − P̂R
ss)




C
...

CAd




T

Σxa
=




C
...

CAd


 (PL

ss − P̂R
ss)




C
...

CAd




T

Σx =
[

CPL
ssC

T + R Σxc

ΣT
xc

Σxa

]

and

d∑

j=1

Paj︷ ︸︸ ︷

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L,

d⋂

i=0

|x̂k+i|k| ≤ L+
A)

Paj =

(∫ L

−L

. . .

∫ L

−L

∫ ∞

L

∫ L+
A0

−L+
A0

. . .

∫ L+
Ad

−L+
Ad

+ . . .

∫ L

−L

. . .

∫ L

−L

∫ −L

−∞

∫ L+
A0

−L+
A0

. . .

∫ L+
Ad

−L+
Ad

)

︸ ︷︷ ︸
d+j+2

N (x, µx,Σx)dx

x =




xk

...
xk+j

x̂k|k
...

x̂k+d|k




, µx =




Cµq

...
Cµq


 ∈ Rd+j+2

Σxc(i1, i2) =
{

CPL
ssC

T + R 1 ≤ i1 = i2 ≤ j + 1
CXssCT 1 ≤ i1 6= i2 ≤ j + 1

Xss = Ai1PL
ss(A

i2)T + Lss −Ai1Lss(Ai1)T

Lss = ALssAT + Ai2−i1Q wherei1 < i2

Σxa =




C
...

CAd


 (PL

ss − P̂R
ss)




C
...

CAd




T

Σxca =




C
...

CAj


 (PL

ss − P̂R
ss)




C
...

CAd




T

Σx =
[

Σxc Σxca

ΣT
xca

Σxa

]

E. At least one up/downcrossing event within an interval

The probability of alarm, P (Aapprox) and
P (Cexact, Aapprox) can be computed as in Eqns. III.9,
and III.10, respectively.

P (Aapprox) = P (|x̂k|k| ≤ L−A,

d⋃

i=1

|x̂k+i|k| ≥ L+
Ai

)(III.9)

= P (|x̂k|k| ≤ L−A)− . . .

P (|x̂k|k| ≤ L−A,

d⋂

i=1

|x̂k+i|k| ≤ L+
Ai

)

= Φ


 L−A√

C(PL
ss − P̂R

ss)CT


− . . .

Φ


 −L−A√

C(PL
ss − P̂R

ss)CT


− . . .

∫ L−A

−L−A

∫ L+
A1

−L+
A1

. . .

∫ L+
Ad

−L+
Ad︸ ︷︷ ︸

d+1

N (x, µx,Σx)dx

x =




x̂k|k
...

x̂k+d|k


 , µx =




Cµq

...
Cµq


 ∈ Rd+1

Σx =




C
...

CAd


 (PL

ss − P̂R
ss)




C
...

CAd




T

And finally,
P (Cexact, Aapprox) =

d∑

j=1

P (
j−1⋂

i=0

|xk+i| < L, |xk+j | > L

︸ ︷︷ ︸
Cexact

, |x̂k|k| ≤ L−A)− . . .

d∑

j=1

P (Cexact(j), |x̂k|k| ≤ L−A,

d⋂

i=1

|x̂k+i|k| ≤ L+
A) (III.10)

whereP (
⋂j−1

i=0 |xk+i| < L, |xk+j | > L, |x̂k|k| ≤ L−A) =
(∫ L

−L

. . .

∫ L

−L

∫ ∞

L

∫ L−A

−L−A

+ . . .

∫ L

−L

. . .

∫ L

−L

∫ −L

−∞

∫ L−A

−L−A

)

︸ ︷︷ ︸
j+2

N (x, µx, Σx)dx
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x =




xk

...
xk+j

x̂k|k


 , µx =




Cµq

...
Cµq


 ∈ Rj+2

Σxc
(i1, i2) =
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T + R 1 ≤ i1 = i2 ≤ j + 1

CXssCT 1 ≤ i1 6= i2 ≤ j + 1
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Lss = ALssAT + Ai2−i1Q wherei1 < i2

Σxa
= C(PL
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ss)




C
...

CAd




T

Σx =
[

Σxc ΣT
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C(PL

ss − P̂R
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T

]

and

P (Cexact, |x̂k|k| ≤ L−A,
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|x̂k+i|k| ≤ L+
A) =
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. . .
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−L

∫ ∞

L

∫ L−A

−L−A

∫ L+
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. . .
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Ad

−L+
Ad

+ . . .
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∫ L−A

−L−A

∫ L+
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)

︸ ︷︷ ︸
d+j+2

N (x, µx, Σx)dx

x =
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...
xk+j

x̂k|k
...

x̂k+d|k




, µx =




Cµq

...
Cµq


 ∈ Rd+j+2

Σxc(i1, i2) =
{
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ssC

T + R 1 ≤ i1 = i2 ≤ j + 1
CXssCT 1 ≤ i1 6= i2 ≤ j + 1

Xss = Ai1PL
ss(A

i2)T + Lss −Ai1Lss(Ai1)T

Lss = ALssAT + Ai2−i1Q wherei1 < i2

Σxa =




C
...

CAd


 (PL

ss − P̂R
ss)




C
...
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T

Σxca =




C
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 (PL
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C
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]
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